|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sdrgdrng | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| sdrgdrng.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) | 
| Ref | Expression | 
|---|---|
| sdrgdrng | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sdrgdrng.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | issdrg 20790 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 3 | 2 | simp3bi 1147 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ DivRing) | 
| 4 | 1, 3 | eqeltrid 2844 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ↾s cress 17275 SubRingcsubrg 20570 DivRingcdr 20730 SubDRingcsdrg 20788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-sdrg 20789 | 
| This theorem is referenced by: sdrgunit 20798 fldextrspunlsplem 33724 fldextrspunlem1 33726 fldextrspunfld 33727 fldextrspundgdvdslem 33731 fldextrspundgdvds 33732 minplymindeg 33752 minplyann 33753 minplyirredlem 33754 minplyirred 33755 irngnminplynz 33756 minplym1p 33757 irredminply 33758 algextdeglem4 33762 algextdeglem8 33766 | 
| Copyright terms: Public domain | W3C validator |