MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgdrng Structured version   Visualization version   GIF version

Theorem sdrgdrng 20693
Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.)
Hypothesis
Ref Expression
sdrgdrng.1 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
sdrgdrng (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing)

Proof of Theorem sdrgdrng
StepHypRef Expression
1 sdrgdrng.1 . 2 𝑆 = (𝑅s 𝐴)
2 issdrg 20691 . . 3 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
32simp3bi 1147 . 2 (𝐴 ∈ (SubDRing‘𝑅) → (𝑅s 𝐴) ∈ DivRing)
41, 3eqeltrid 2832 1 (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  s cress 17159  SubRingcsubrg 20472  DivRingcdr 20632  SubDRingcsdrg 20689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-sdrg 20690
This theorem is referenced by:  sdrgunit  20699  subsdrg  33247  fldextrspunlsplem  33644  fldextrspunlem1  33646  fldextrspunfld  33647  fldextrspundgdvdslem  33651  fldextrspundgdvds  33652  minplymindeg  33674  minplyann  33675  minplyirredlem  33676  minplyirred  33677  irngnminplynz  33678  minplym1p  33679  minplynzm1p  33680  irredminply  33682  algextdeglem4  33686  algextdeglem8  33690
  Copyright terms: Public domain W3C validator