![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdrgdrng | Structured version Visualization version GIF version |
Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.) |
Ref | Expression |
---|---|
sdrgdrng.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
sdrgdrng | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdrgdrng.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | issdrg 20811 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
3 | 2 | simp3bi 1147 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ DivRing) |
4 | 1, 3 | eqeltrid 2848 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ↾s cress 17287 SubRingcsubrg 20595 DivRingcdr 20751 SubDRingcsdrg 20809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-sdrg 20810 |
This theorem is referenced by: sdrgunit 20819 minplymindeg 33701 minplyann 33702 minplyirredlem 33703 minplyirred 33704 irngnminplynz 33705 minplym1p 33706 irredminply 33707 algextdeglem4 33711 algextdeglem8 33715 |
Copyright terms: Public domain | W3C validator |