![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdrgdrng | Structured version Visualization version GIF version |
Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.) |
Ref | Expression |
---|---|
sdrgdrng.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
sdrgdrng | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdrgdrng.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | issdrg 20635 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
3 | 2 | simp3bi 1146 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ DivRing) |
4 | 1, 3 | eqeltrid 2836 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 ↾s cress 17180 SubRingcsubrg 20465 DivRingcdr 20583 SubDRingcsdrg 20633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-sdrg 20634 |
This theorem is referenced by: sdrgunit 20643 minplyirredlem 33223 minplyirred 33224 irngnminplynz 33225 minplym1p 33226 algextdeglem4 33230 algextdeglem8 33234 |
Copyright terms: Public domain | W3C validator |