MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgdrng Structured version   Visualization version   GIF version

Theorem sdrgdrng 20792
Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.)
Hypothesis
Ref Expression
sdrgdrng.1 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
sdrgdrng (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing)

Proof of Theorem sdrgdrng
StepHypRef Expression
1 sdrgdrng.1 . 2 𝑆 = (𝑅s 𝐴)
2 issdrg 20790 . . 3 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
32simp3bi 1147 . 2 (𝐴 ∈ (SubDRing‘𝑅) → (𝑅s 𝐴) ∈ DivRing)
41, 3eqeltrid 2844 1 (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  s cress 17275  SubRingcsubrg 20570  DivRingcdr 20730  SubDRingcsdrg 20788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-sdrg 20789
This theorem is referenced by:  sdrgunit  20798  fldextrspunlsplem  33724  fldextrspunlem1  33726  fldextrspunfld  33727  fldextrspundgdvdslem  33731  fldextrspundgdvds  33732  minplymindeg  33752  minplyann  33753  minplyirredlem  33754  minplyirred  33755  irngnminplynz  33756  minplym1p  33757  irredminply  33758  algextdeglem4  33762  algextdeglem8  33766
  Copyright terms: Public domain W3C validator