| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgdrng | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| sdrgdrng.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| sdrgdrng | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdrgdrng.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | issdrg 20697 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 3 | 2 | simp3bi 1147 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ DivRing) |
| 4 | 1, 3 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ↾s cress 17200 SubRingcsubrg 20478 DivRingcdr 20638 SubDRingcsdrg 20695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-sdrg 20696 |
| This theorem is referenced by: sdrgunit 20705 subsdrg 33248 fldextrspunlsplem 33668 fldextrspunlem1 33670 fldextrspunfld 33671 fldextrspundgdvdslem 33675 fldextrspundgdvds 33676 minplymindeg 33698 minplyann 33699 minplyirredlem 33700 minplyirred 33701 irngnminplynz 33702 minplym1p 33703 minplynzm1p 33704 irredminply 33706 algextdeglem4 33710 algextdeglem8 33714 |
| Copyright terms: Public domain | W3C validator |