| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgdrng | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is a division ring. (Contributed by SN, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| sdrgdrng.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| sdrgdrng | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdrgdrng.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | issdrg 20691 | . . 3 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 3 | 2 | simp3bi 1147 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ DivRing) |
| 4 | 1, 3 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ↾s cress 17159 SubRingcsubrg 20472 DivRingcdr 20632 SubDRingcsdrg 20689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-sdrg 20690 |
| This theorem is referenced by: sdrgunit 20699 subsdrg 33247 fldextrspunlsplem 33644 fldextrspunlem1 33646 fldextrspunfld 33647 fldextrspundgdvdslem 33651 fldextrspundgdvds 33652 minplymindeg 33674 minplyann 33675 minplyirredlem 33676 minplyirred 33677 irngnminplynz 33678 minplym1p 33679 minplynzm1p 33680 irredminply 33682 algextdeglem4 33686 algextdeglem8 33690 |
| Copyright terms: Public domain | W3C validator |