| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issdrg | Structured version Visualization version GIF version | ||
| Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| issdrg | ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdrg 20697 | . . . 4 ⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) | |
| 2 | 1 | mptrcl 6933 | . . 3 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) |
| 3 | fveq2 6817 | . . . . . . 7 ⊢ (𝑤 = 𝑅 → (SubRing‘𝑤) = (SubRing‘𝑅)) | |
| 4 | oveq1 7348 | . . . . . . . 8 ⊢ (𝑤 = 𝑅 → (𝑤 ↾s 𝑠) = (𝑅 ↾s 𝑠)) | |
| 5 | 4 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑤 = 𝑅 → ((𝑤 ↾s 𝑠) ∈ DivRing ↔ (𝑅 ↾s 𝑠) ∈ DivRing)) |
| 6 | 3, 5 | rabeqbidv 3413 | . . . . . 6 ⊢ (𝑤 = 𝑅 → {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing} = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing}) |
| 7 | fvex 6830 | . . . . . . 7 ⊢ (SubRing‘𝑅) ∈ V | |
| 8 | 7 | rabex 5272 | . . . . . 6 ⊢ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing} ∈ V |
| 9 | 6, 1, 8 | fvmpt 6924 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (SubDRing‘𝑅) = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing}) |
| 10 | 9 | eleq2d 2817 | . . . 4 ⊢ (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ 𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing})) |
| 11 | oveq2 7349 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑅 ↾s 𝑠) = (𝑅 ↾s 𝑆)) | |
| 12 | 11 | eleq1d 2816 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑅 ↾s 𝑠) ∈ DivRing ↔ (𝑅 ↾s 𝑆) ∈ DivRing)) |
| 13 | 12 | elrab 3642 | . . . 4 ⊢ (𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing} ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
| 14 | 10, 13 | bitrdi 287 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) |
| 15 | 2, 14 | biadanii 821 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) |
| 16 | 3anass 1094 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) | |
| 17 | 15, 16 | bitr4i 278 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {crab 3395 ‘cfv 6476 (class class class)co 7341 ↾s cress 17136 SubRingcsubrg 20479 DivRingcdr 20639 SubDRingcsdrg 20696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-sdrg 20697 |
| This theorem is referenced by: sdrgrcl 20699 sdrgdrng 20700 sdrgsubrg 20701 sdrgid 20702 sdrgss 20703 issdrg2 20705 fldsdrgfld 20708 sdrgint 20714 primefld 20715 primefld0cl 20716 primefld1cl 20717 subsdrg 33256 sdrgdvcl 33257 sdrginvcl 33258 primefldchr 33259 fldgensdrg 33272 fldgenssp 33276 primefldgen1 33279 1fldgenq 33280 fldextsdrg 33659 fldextrspunlem2 33682 fldextrspundgdvdslem 33685 fldextrspundgdvds 33686 irngnzply1lem 33695 irngnzply1 33696 ply1annig1p 33709 minplycl 33711 ply1annprmidl 33712 algextdeglem1 33722 algextdeglem2 33723 algextdeglem3 33724 algextdeglem4 33725 algextdeglem5 33726 constrextdg2 33754 constrext2chnlem 33755 constrcon 33779 2sqr3minply 33785 cos9thpiminply 33793 |
| Copyright terms: Public domain | W3C validator |