Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issdrg | Structured version Visualization version GIF version |
Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.) |
Ref | Expression |
---|---|
issdrg | ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdrg 20062 | . . . 4 ⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) | |
2 | 1 | mptrcl 6884 | . . 3 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) |
3 | fveq2 6774 | . . . . . . 7 ⊢ (𝑤 = 𝑅 → (SubRing‘𝑤) = (SubRing‘𝑅)) | |
4 | oveq1 7282 | . . . . . . . 8 ⊢ (𝑤 = 𝑅 → (𝑤 ↾s 𝑠) = (𝑅 ↾s 𝑠)) | |
5 | 4 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑤 = 𝑅 → ((𝑤 ↾s 𝑠) ∈ DivRing ↔ (𝑅 ↾s 𝑠) ∈ DivRing)) |
6 | 3, 5 | rabeqbidv 3420 | . . . . . 6 ⊢ (𝑤 = 𝑅 → {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing} = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing}) |
7 | fvex 6787 | . . . . . . 7 ⊢ (SubRing‘𝑅) ∈ V | |
8 | 7 | rabex 5256 | . . . . . 6 ⊢ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing} ∈ V |
9 | 6, 1, 8 | fvmpt 6875 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (SubDRing‘𝑅) = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing}) |
10 | 9 | eleq2d 2824 | . . . 4 ⊢ (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ 𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing})) |
11 | oveq2 7283 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑅 ↾s 𝑠) = (𝑅 ↾s 𝑆)) | |
12 | 11 | eleq1d 2823 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑅 ↾s 𝑠) ∈ DivRing ↔ (𝑅 ↾s 𝑆) ∈ DivRing)) |
13 | 12 | elrab 3624 | . . . 4 ⊢ (𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing} ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
14 | 10, 13 | bitrdi 287 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) |
15 | 2, 14 | biadanii 819 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) |
16 | 3anass 1094 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) | |
17 | 15, 16 | bitr4i 277 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ‘cfv 6433 (class class class)co 7275 ↾s cress 16941 DivRingcdr 19991 SubRingcsubrg 20020 SubDRingcsdrg 20061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-sdrg 20062 |
This theorem is referenced by: sdrgid 20064 sdrgss 20065 issdrg2 20066 sdrgint 20072 primefld 20073 primefld0cl 20074 primefld1cl 20075 primefldchr 31493 |
Copyright terms: Public domain | W3C validator |