Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issdrg | Structured version Visualization version GIF version |
Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.) |
Ref | Expression |
---|---|
issdrg | ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sdrg 19977 | . . . 4 ⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) | |
2 | 1 | mptrcl 6866 | . . 3 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) |
3 | fveq2 6756 | . . . . . . 7 ⊢ (𝑤 = 𝑅 → (SubRing‘𝑤) = (SubRing‘𝑅)) | |
4 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑤 = 𝑅 → (𝑤 ↾s 𝑠) = (𝑅 ↾s 𝑠)) | |
5 | 4 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑤 = 𝑅 → ((𝑤 ↾s 𝑠) ∈ DivRing ↔ (𝑅 ↾s 𝑠) ∈ DivRing)) |
6 | 3, 5 | rabeqbidv 3410 | . . . . . 6 ⊢ (𝑤 = 𝑅 → {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing} = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing}) |
7 | fvex 6769 | . . . . . . 7 ⊢ (SubRing‘𝑅) ∈ V | |
8 | 7 | rabex 5251 | . . . . . 6 ⊢ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing} ∈ V |
9 | 6, 1, 8 | fvmpt 6857 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (SubDRing‘𝑅) = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing}) |
10 | 9 | eleq2d 2824 | . . . 4 ⊢ (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ 𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing})) |
11 | oveq2 7263 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑅 ↾s 𝑠) = (𝑅 ↾s 𝑆)) | |
12 | 11 | eleq1d 2823 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑅 ↾s 𝑠) ∈ DivRing ↔ (𝑅 ↾s 𝑆) ∈ DivRing)) |
13 | 12 | elrab 3617 | . . . 4 ⊢ (𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing} ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
14 | 10, 13 | bitrdi 286 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) |
15 | 2, 14 | biadanii 818 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) |
16 | 3anass 1093 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) | |
17 | 15, 16 | bitr4i 277 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {crab 3067 ‘cfv 6418 (class class class)co 7255 ↾s cress 16867 DivRingcdr 19906 SubRingcsubrg 19935 SubDRingcsdrg 19976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-sdrg 19977 |
This theorem is referenced by: sdrgid 19979 sdrgss 19980 issdrg2 19981 sdrgint 19987 primefld 19988 primefld0cl 19989 primefld1cl 19990 primefldchr 31395 |
Copyright terms: Public domain | W3C validator |