| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issdrg | Structured version Visualization version GIF version | ||
| Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.) |
| Ref | Expression |
|---|---|
| issdrg | ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sdrg 20696 | . . . 4 ⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) | |
| 2 | 1 | mptrcl 6977 | . . 3 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) |
| 3 | fveq2 6858 | . . . . . . 7 ⊢ (𝑤 = 𝑅 → (SubRing‘𝑤) = (SubRing‘𝑅)) | |
| 4 | oveq1 7394 | . . . . . . . 8 ⊢ (𝑤 = 𝑅 → (𝑤 ↾s 𝑠) = (𝑅 ↾s 𝑠)) | |
| 5 | 4 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑤 = 𝑅 → ((𝑤 ↾s 𝑠) ∈ DivRing ↔ (𝑅 ↾s 𝑠) ∈ DivRing)) |
| 6 | 3, 5 | rabeqbidv 3424 | . . . . . 6 ⊢ (𝑤 = 𝑅 → {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing} = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing}) |
| 7 | fvex 6871 | . . . . . . 7 ⊢ (SubRing‘𝑅) ∈ V | |
| 8 | 7 | rabex 5294 | . . . . . 6 ⊢ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing} ∈ V |
| 9 | 6, 1, 8 | fvmpt 6968 | . . . . 5 ⊢ (𝑅 ∈ DivRing → (SubDRing‘𝑅) = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing}) |
| 10 | 9 | eleq2d 2814 | . . . 4 ⊢ (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ 𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing})) |
| 11 | oveq2 7395 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑅 ↾s 𝑠) = (𝑅 ↾s 𝑆)) | |
| 12 | 11 | eleq1d 2813 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑅 ↾s 𝑠) ∈ DivRing ↔ (𝑅 ↾s 𝑆) ∈ DivRing)) |
| 13 | 12 | elrab 3659 | . . . 4 ⊢ (𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅 ↾s 𝑠) ∈ DivRing} ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
| 14 | 10, 13 | bitrdi 287 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) |
| 15 | 2, 14 | biadanii 821 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) |
| 16 | 3anass 1094 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing))) | |
| 17 | 15, 16 | bitr4i 278 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {crab 3405 ‘cfv 6511 (class class class)co 7387 ↾s cress 17200 SubRingcsubrg 20478 DivRingcdr 20638 SubDRingcsdrg 20695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-sdrg 20696 |
| This theorem is referenced by: sdrgrcl 20698 sdrgdrng 20699 sdrgsubrg 20700 sdrgid 20701 sdrgss 20702 issdrg2 20704 fldsdrgfld 20707 sdrgint 20713 primefld 20714 primefld0cl 20715 primefld1cl 20716 subsdrg 33248 sdrgdvcl 33249 sdrginvcl 33250 primefldchr 33251 fldgensdrg 33264 fldgenssp 33268 primefldgen1 33271 1fldgenq 33272 fldextsdrg 33650 fldextrspunlem2 33672 fldextrspundgdvdslem 33675 fldextrspundgdvds 33676 irngnzply1lem 33685 irngnzply1 33686 ply1annig1p 33694 minplycl 33696 ply1annprmidl 33697 algextdeglem1 33707 algextdeglem2 33708 algextdeglem3 33709 algextdeglem4 33710 algextdeglem5 33711 constrextdg2 33739 constrext2chnlem 33740 constrcon 33764 2sqr3minply 33770 cos9thpiminply 33778 |
| Copyright terms: Public domain | W3C validator |