MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issdrg Structured version   Visualization version   GIF version

Theorem issdrg 20676
Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.)
Assertion
Ref Expression
issdrg (𝑆 ∈ (SubDRingβ€˜π‘…) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing))

Proof of Theorem issdrg
Dummy variables 𝑀 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sdrg 20675 . . . 4 SubDRing = (𝑀 ∈ DivRing ↦ {𝑠 ∈ (SubRingβ€˜π‘€) ∣ (𝑀 β†Ύs 𝑠) ∈ DivRing})
21mptrcl 7014 . . 3 (𝑆 ∈ (SubDRingβ€˜π‘…) β†’ 𝑅 ∈ DivRing)
3 fveq2 6897 . . . . . . 7 (𝑀 = 𝑅 β†’ (SubRingβ€˜π‘€) = (SubRingβ€˜π‘…))
4 oveq1 7427 . . . . . . . 8 (𝑀 = 𝑅 β†’ (𝑀 β†Ύs 𝑠) = (𝑅 β†Ύs 𝑠))
54eleq1d 2814 . . . . . . 7 (𝑀 = 𝑅 β†’ ((𝑀 β†Ύs 𝑠) ∈ DivRing ↔ (𝑅 β†Ύs 𝑠) ∈ DivRing))
63, 5rabeqbidv 3446 . . . . . 6 (𝑀 = 𝑅 β†’ {𝑠 ∈ (SubRingβ€˜π‘€) ∣ (𝑀 β†Ύs 𝑠) ∈ DivRing} = {𝑠 ∈ (SubRingβ€˜π‘…) ∣ (𝑅 β†Ύs 𝑠) ∈ DivRing})
7 fvex 6910 . . . . . . 7 (SubRingβ€˜π‘…) ∈ V
87rabex 5334 . . . . . 6 {𝑠 ∈ (SubRingβ€˜π‘…) ∣ (𝑅 β†Ύs 𝑠) ∈ DivRing} ∈ V
96, 1, 8fvmpt 7005 . . . . 5 (𝑅 ∈ DivRing β†’ (SubDRingβ€˜π‘…) = {𝑠 ∈ (SubRingβ€˜π‘…) ∣ (𝑅 β†Ύs 𝑠) ∈ DivRing})
109eleq2d 2815 . . . 4 (𝑅 ∈ DivRing β†’ (𝑆 ∈ (SubDRingβ€˜π‘…) ↔ 𝑆 ∈ {𝑠 ∈ (SubRingβ€˜π‘…) ∣ (𝑅 β†Ύs 𝑠) ∈ DivRing}))
11 oveq2 7428 . . . . . 6 (𝑠 = 𝑆 β†’ (𝑅 β†Ύs 𝑠) = (𝑅 β†Ύs 𝑆))
1211eleq1d 2814 . . . . 5 (𝑠 = 𝑆 β†’ ((𝑅 β†Ύs 𝑠) ∈ DivRing ↔ (𝑅 β†Ύs 𝑆) ∈ DivRing))
1312elrab 3682 . . . 4 (𝑆 ∈ {𝑠 ∈ (SubRingβ€˜π‘…) ∣ (𝑅 β†Ύs 𝑠) ∈ DivRing} ↔ (𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing))
1410, 13bitrdi 287 . . 3 (𝑅 ∈ DivRing β†’ (𝑆 ∈ (SubDRingβ€˜π‘…) ↔ (𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing)))
152, 14biadanii 821 . 2 (𝑆 ∈ (SubDRingβ€˜π‘…) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing)))
16 3anass 1093 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing)))
1715, 16bitr4i 278 1 (𝑆 ∈ (SubDRingβ€˜π‘…) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  {crab 3429  β€˜cfv 6548  (class class class)co 7420   β†Ύs cress 17209  SubRingcsubrg 20506  DivRingcdr 20624  SubDRingcsdrg 20674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fv 6556  df-ov 7423  df-sdrg 20675
This theorem is referenced by:  sdrgrcl  20677  sdrgdrng  20678  sdrgsubrg  20679  sdrgid  20680  sdrgss  20681  issdrg2  20683  fldsdrgfld  20686  sdrgint  20692  primefld  20693  primefld0cl  20694  primefld1cl  20695  sdrgdvcl  32977  sdrginvcl  32978  primefldchr  32979  fldgensdrg  33014  fldgenssp  33018  primefldgen1  33021  1fldgenq  33022  irngnzply1lem  33368  irngnzply1  33369  ply1annig1p  33375  minplycl  33377  ply1annprmidl  33378  algextdeglem1  33385  algextdeglem2  33386  algextdeglem3  33387  algextdeglem4  33388  algextdeglem5  33389
  Copyright terms: Public domain W3C validator