MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issdrg Structured version   Visualization version   GIF version

Theorem issdrg 20635
Description: Property of a division subring. (Contributed by Stefan O'Rear, 3-Oct-2015.)
Assertion
Ref Expression
issdrg (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))

Proof of Theorem issdrg
Dummy variables 𝑤 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sdrg 20634 . . . 4 SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤s 𝑠) ∈ DivRing})
21mptrcl 7007 . . 3 (𝑆 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing)
3 fveq2 6891 . . . . . . 7 (𝑤 = 𝑅 → (SubRing‘𝑤) = (SubRing‘𝑅))
4 oveq1 7419 . . . . . . . 8 (𝑤 = 𝑅 → (𝑤s 𝑠) = (𝑅s 𝑠))
54eleq1d 2817 . . . . . . 7 (𝑤 = 𝑅 → ((𝑤s 𝑠) ∈ DivRing ↔ (𝑅s 𝑠) ∈ DivRing))
63, 5rabeqbidv 3448 . . . . . 6 (𝑤 = 𝑅 → {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤s 𝑠) ∈ DivRing} = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing})
7 fvex 6904 . . . . . . 7 (SubRing‘𝑅) ∈ V
87rabex 5332 . . . . . 6 {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing} ∈ V
96, 1, 8fvmpt 6998 . . . . 5 (𝑅 ∈ DivRing → (SubDRing‘𝑅) = {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing})
109eleq2d 2818 . . . 4 (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ 𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing}))
11 oveq2 7420 . . . . . 6 (𝑠 = 𝑆 → (𝑅s 𝑠) = (𝑅s 𝑆))
1211eleq1d 2817 . . . . 5 (𝑠 = 𝑆 → ((𝑅s 𝑠) ∈ DivRing ↔ (𝑅s 𝑆) ∈ DivRing))
1312elrab 3683 . . . 4 (𝑆 ∈ {𝑠 ∈ (SubRing‘𝑅) ∣ (𝑅s 𝑠) ∈ DivRing} ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
1410, 13bitrdi 287 . . 3 (𝑅 ∈ DivRing → (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing)))
152, 14biadanii 819 . 2 (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing)))
16 3anass 1094 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ (𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing)))
1715, 16bitr4i 278 1 (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  {crab 3431  cfv 6543  (class class class)co 7412  s cress 17180  SubRingcsubrg 20465  DivRingcdr 20583  SubDRingcsdrg 20633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-sdrg 20634
This theorem is referenced by:  sdrgrcl  20636  sdrgdrng  20637  sdrgsubrg  20638  sdrgid  20639  sdrgss  20640  issdrg2  20642  fldsdrgfld  20645  sdrgint  20651  primefld  20652  primefld0cl  20653  primefld1cl  20654  sdrgdvcl  32835  sdrginvcl  32836  primefldchr  32837  fldgensdrg  32842  fldgenssp  32846  primefldgen1  32849  1fldgenq  32850  irngnzply1lem  33211  irngnzply1  33212  ply1annig1p  33222  minplycl  33224  ply1annprmidl  33225  algextdeglem1  33230  algextdeglem2  33231  algextdeglem3  33232  algextdeglem4  33233  algextdeglem5  33234
  Copyright terms: Public domain W3C validator