Step | Hyp | Ref
| Expression |
1 | | df-sdrg 20403 |
. . . 4
β’ SubDRing
= (π€ β DivRing β¦
{π β
(SubRingβπ€) β£
(π€ βΎs
π ) β
DivRing}) |
2 | 1 | mptrcl 7008 |
. . 3
β’ (π β (SubDRingβπ
) β π
β DivRing) |
3 | | fveq2 6892 |
. . . . . . 7
β’ (π€ = π
β (SubRingβπ€) = (SubRingβπ
)) |
4 | | oveq1 7416 |
. . . . . . . 8
β’ (π€ = π
β (π€ βΎs π ) = (π
βΎs π )) |
5 | 4 | eleq1d 2819 |
. . . . . . 7
β’ (π€ = π
β ((π€ βΎs π ) β DivRing β (π
βΎs π ) β DivRing)) |
6 | 3, 5 | rabeqbidv 3450 |
. . . . . 6
β’ (π€ = π
β {π β (SubRingβπ€) β£ (π€ βΎs π ) β DivRing} = {π β (SubRingβπ
) β£ (π
βΎs π ) β DivRing}) |
7 | | fvex 6905 |
. . . . . . 7
β’
(SubRingβπ
)
β V |
8 | 7 | rabex 5333 |
. . . . . 6
β’ {π β (SubRingβπ
) β£ (π
βΎs π ) β DivRing} β V |
9 | 6, 1, 8 | fvmpt 6999 |
. . . . 5
β’ (π
β DivRing β
(SubDRingβπ
) = {π β (SubRingβπ
) β£ (π
βΎs π ) β DivRing}) |
10 | 9 | eleq2d 2820 |
. . . 4
β’ (π
β DivRing β (π β (SubDRingβπ
) β π β {π β (SubRingβπ
) β£ (π
βΎs π ) β DivRing})) |
11 | | oveq2 7417 |
. . . . . 6
β’ (π = π β (π
βΎs π ) = (π
βΎs π)) |
12 | 11 | eleq1d 2819 |
. . . . 5
β’ (π = π β ((π
βΎs π ) β DivRing β (π
βΎs π) β DivRing)) |
13 | 12 | elrab 3684 |
. . . 4
β’ (π β {π β (SubRingβπ
) β£ (π
βΎs π ) β DivRing} β (π β (SubRingβπ
) β§ (π
βΎs π) β DivRing)) |
14 | 10, 13 | bitrdi 287 |
. . 3
β’ (π
β DivRing β (π β (SubDRingβπ
) β (π β (SubRingβπ
) β§ (π
βΎs π) β DivRing))) |
15 | 2, 14 | biadanii 821 |
. 2
β’ (π β (SubDRingβπ
) β (π
β DivRing β§ (π β (SubRingβπ
) β§ (π
βΎs π) β DivRing))) |
16 | | 3anass 1096 |
. 2
β’ ((π
β DivRing β§ π β (SubRingβπ
) β§ (π
βΎs π) β DivRing) β (π
β DivRing β§ (π β (SubRingβπ
) β§ (π
βΎs π) β DivRing))) |
17 | 15, 16 | bitr4i 278 |
1
β’ (π β (SubDRingβπ
) β (π
β DivRing β§ π β (SubRingβπ
) β§ (π
βΎs π) β DivRing)) |