Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sectrcl Structured version   Visualization version   GIF version

Theorem sectrcl 49011
Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
sectrcl.s 𝑆 = (Sect‘𝐶)
sectrcl.f (𝜑𝐹(𝑋𝑆𝑌)𝐺)
Assertion
Ref Expression
sectrcl (𝜑𝐶 ∈ Cat)

Proof of Theorem sectrcl
Dummy variables 𝑥 𝑦 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectrcl.f . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 df-br 5108 . . . . 5 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌))
3 df-ov 7390 . . . . . 6 (𝑋𝑆𝑌) = (𝑆‘⟨𝑋, 𝑌⟩)
43eleq2i 2820 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌) ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩))
52, 4bitri 275 . . . 4 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩))
6 elfvne0 48837 . . . 4 (⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩) → 𝑆 ≠ ∅)
75, 6sylbi 217 . . 3 (𝐹(𝑋𝑆𝑌)𝐺𝑆 ≠ ∅)
8 sectrcl.s . . . . 5 𝑆 = (Sect‘𝐶)
98neeq1i 2989 . . . 4 (𝑆 ≠ ∅ ↔ (Sect‘𝐶) ≠ ∅)
10 n0 4316 . . . 4 ((Sect‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶))
119, 10bitri 275 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶))
127, 11sylib 218 . 2 (𝐹(𝑋𝑆𝑌)𝐺 → ∃𝑥 𝑥 ∈ (Sect‘𝐶))
13 df-sect 17709 . . . 4 Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
1413mptrcl 6977 . . 3 (𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
161, 12, 153syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  [wsbc 3753  c0 4296  cop 4595   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Sectcsect 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fv 6519  df-ov 7390  df-sect 17709
This theorem is referenced by:  sectrcl2  49012  isinv2  49015  catcsect  49387
  Copyright terms: Public domain W3C validator