Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sectrcl Structured version   Visualization version   GIF version

Theorem sectrcl 49137
Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
sectrcl.s 𝑆 = (Sect‘𝐶)
sectrcl.f (𝜑𝐹(𝑋𝑆𝑌)𝐺)
Assertion
Ref Expression
sectrcl (𝜑𝐶 ∈ Cat)

Proof of Theorem sectrcl
Dummy variables 𝑥 𝑦 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectrcl.f . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 df-br 5096 . . . . 5 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌))
3 df-ov 7358 . . . . . 6 (𝑋𝑆𝑌) = (𝑆‘⟨𝑋, 𝑌⟩)
43eleq2i 2825 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌) ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩))
52, 4bitri 275 . . . 4 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩))
6 elfvne0 48963 . . . 4 (⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩) → 𝑆 ≠ ∅)
75, 6sylbi 217 . . 3 (𝐹(𝑋𝑆𝑌)𝐺𝑆 ≠ ∅)
8 sectrcl.s . . . . 5 𝑆 = (Sect‘𝐶)
98neeq1i 2994 . . . 4 (𝑆 ≠ ∅ ↔ (Sect‘𝐶) ≠ ∅)
10 n0 4304 . . . 4 ((Sect‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶))
119, 10bitri 275 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶))
127, 11sylib 218 . 2 (𝐹(𝑋𝑆𝑌)𝐺 → ∃𝑥 𝑥 ∈ (Sect‘𝐶))
13 df-sect 17664 . . . 4 Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
1413mptrcl 6947 . . 3 (𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1931 . 2 (∃𝑥 𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
161, 12, 153syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2930  [wsbc 3738  c0 4284  cop 4583   class class class wbr 5095  {copab 5157  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17130  Hom chom 17182  compcco 17183  Catccat 17580  Idccid 17581  Sectcsect 17661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fv 6497  df-ov 7358  df-sect 17664
This theorem is referenced by:  sectrcl2  49138  isinv2  49141  catcsect  49513
  Copyright terms: Public domain W3C validator