Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sectrcl Structured version   Visualization version   GIF version

Theorem sectrcl 49033
Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
sectrcl.s 𝑆 = (Sect‘𝐶)
sectrcl.f (𝜑𝐹(𝑋𝑆𝑌)𝐺)
Assertion
Ref Expression
sectrcl (𝜑𝐶 ∈ Cat)

Proof of Theorem sectrcl
Dummy variables 𝑥 𝑦 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectrcl.f . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 df-br 5090 . . . . 5 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌))
3 df-ov 7344 . . . . . 6 (𝑋𝑆𝑌) = (𝑆‘⟨𝑋, 𝑌⟩)
43eleq2i 2821 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌) ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩))
52, 4bitri 275 . . . 4 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩))
6 elfvne0 48859 . . . 4 (⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩) → 𝑆 ≠ ∅)
75, 6sylbi 217 . . 3 (𝐹(𝑋𝑆𝑌)𝐺𝑆 ≠ ∅)
8 sectrcl.s . . . . 5 𝑆 = (Sect‘𝐶)
98neeq1i 2990 . . . 4 (𝑆 ≠ ∅ ↔ (Sect‘𝐶) ≠ ∅)
10 n0 4301 . . . 4 ((Sect‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶))
119, 10bitri 275 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶))
127, 11sylib 218 . 2 (𝐹(𝑋𝑆𝑌)𝐺 → ∃𝑥 𝑥 ∈ (Sect‘𝐶))
13 df-sect 17646 . . . 4 Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
1413mptrcl 6933 . . 3 (𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1931 . 2 (∃𝑥 𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
161, 12, 153syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2110  wne 2926  [wsbc 3739  c0 4281  cop 4580   class class class wbr 5089  {copab 5151  cfv 6477  (class class class)co 7341  cmpo 7343  Basecbs 17112  Hom chom 17164  compcco 17165  Catccat 17562  Idccid 17563  Sectcsect 17643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fv 6485  df-ov 7344  df-sect 17646
This theorem is referenced by:  sectrcl2  49034  isinv2  49037  catcsect  49409
  Copyright terms: Public domain W3C validator