| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sectrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| sectrcl.s | ⊢ 𝑆 = (Sect‘𝐶) |
| sectrcl.f | ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) |
| Ref | Expression |
|---|---|
| sectrcl | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectrcl.f | . 2 ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) | |
| 2 | df-br 5116 | . . . . 5 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑋𝑆𝑌)) | |
| 3 | df-ov 7397 | . . . . . 6 ⊢ (𝑋𝑆𝑌) = (𝑆‘〈𝑋, 𝑌〉) | |
| 4 | 3 | eleq2i 2821 | . . . . 5 ⊢ (〈𝐹, 𝐺〉 ∈ (𝑋𝑆𝑌) ↔ 〈𝐹, 𝐺〉 ∈ (𝑆‘〈𝑋, 𝑌〉)) |
| 5 | 2, 4 | bitri 275 | . . . 4 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝑆‘〈𝑋, 𝑌〉)) |
| 6 | elfvne0 48769 | . . . 4 ⊢ (〈𝐹, 𝐺〉 ∈ (𝑆‘〈𝑋, 𝑌〉) → 𝑆 ≠ ∅) | |
| 7 | 5, 6 | sylbi 217 | . . 3 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 → 𝑆 ≠ ∅) |
| 8 | sectrcl.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
| 9 | 8 | neeq1i 2991 | . . . 4 ⊢ (𝑆 ≠ ∅ ↔ (Sect‘𝐶) ≠ ∅) |
| 10 | n0 4324 | . . . 4 ⊢ ((Sect‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶)) | |
| 11 | 9, 10 | bitri 275 | . . 3 ⊢ (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶)) |
| 12 | 7, 11 | sylib 218 | . 2 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 → ∃𝑥 𝑥 ∈ (Sect‘𝐶)) |
| 13 | df-sect 17715 | . . . 4 ⊢ Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))})) | |
| 14 | 13 | mptrcl 6984 | . . 3 ⊢ (𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat) |
| 15 | 14 | exlimiv 1930 | . 2 ⊢ (∃𝑥 𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat) |
| 16 | 1, 12, 15 | 3syl 18 | 1 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2927 [wsbc 3761 ∅c0 4304 〈cop 4603 class class class wbr 5115 {copab 5177 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 Basecbs 17185 Hom chom 17237 compcco 17238 Catccat 17631 Idccid 17632 Sectcsect 17712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-xp 5652 df-rel 5653 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fv 6527 df-ov 7397 df-sect 17715 |
| This theorem is referenced by: sectrcl2 48940 isinv2 48943 catcsect 49290 |
| Copyright terms: Public domain | W3C validator |