Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sectrcl Structured version   Visualization version   GIF version

Theorem sectrcl 48995
Description: Reverse closure for section relations. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
sectrcl.s 𝑆 = (Sect‘𝐶)
sectrcl.f (𝜑𝐹(𝑋𝑆𝑌)𝐺)
Assertion
Ref Expression
sectrcl (𝜑𝐶 ∈ Cat)

Proof of Theorem sectrcl
Dummy variables 𝑥 𝑦 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sectrcl.f . 2 (𝜑𝐹(𝑋𝑆𝑌)𝐺)
2 df-br 5096 . . . . 5 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌))
3 df-ov 7356 . . . . . 6 (𝑋𝑆𝑌) = (𝑆‘⟨𝑋, 𝑌⟩)
43eleq2i 2820 . . . . 5 (⟨𝐹, 𝐺⟩ ∈ (𝑋𝑆𝑌) ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩))
52, 4bitri 275 . . . 4 (𝐹(𝑋𝑆𝑌)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩))
6 elfvne0 48821 . . . 4 (⟨𝐹, 𝐺⟩ ∈ (𝑆‘⟨𝑋, 𝑌⟩) → 𝑆 ≠ ∅)
75, 6sylbi 217 . . 3 (𝐹(𝑋𝑆𝑌)𝐺𝑆 ≠ ∅)
8 sectrcl.s . . . . 5 𝑆 = (Sect‘𝐶)
98neeq1i 2989 . . . 4 (𝑆 ≠ ∅ ↔ (Sect‘𝐶) ≠ ∅)
10 n0 4306 . . . 4 ((Sect‘𝐶) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶))
119, 10bitri 275 . . 3 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (Sect‘𝐶))
127, 11sylib 218 . 2 (𝐹(𝑋𝑆𝑌)𝐺 → ∃𝑥 𝑥 ∈ (Sect‘𝐶))
13 df-sect 17672 . . . 4 Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
1413mptrcl 6943 . . 3 (𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
1514exlimiv 1930 . 2 (∃𝑥 𝑥 ∈ (Sect‘𝐶) → 𝐶 ∈ Cat)
161, 12, 153syl 18 1 (𝜑𝐶 ∈ Cat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  [wsbc 3744  c0 4286  cop 4585   class class class wbr 5095  {copab 5157  cfv 6486  (class class class)co 7353  cmpo 7355  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Idccid 17589  Sectcsect 17669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-rel 5630  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fv 6494  df-ov 7356  df-sect 17672
This theorem is referenced by:  sectrcl2  48996  isinv2  48999  catcsect  49371
  Copyright terms: Public domain W3C validator