| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > catcsect | Structured version Visualization version GIF version | ||
| Description: The property "𝐹 is a section of 𝐺 " in a category of small categories (in a universe). (Contributed by Zhi Wang, 14-Nov-2025.) |
| Ref | Expression |
|---|---|
| catcsect.c | ⊢ 𝐶 = (CatCat‘𝑈) |
| catcsect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| catcsect.i | ⊢ 𝐼 = (idfunc‘𝑋) |
| catcsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| catcsect | ⊢ (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺 ∘func 𝐹) = 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcsect.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
| 2 | id 22 | . . . . 5 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 → 𝐹(𝑋𝑆𝑌)𝐺) | |
| 3 | 1, 2 | sectrcl 49011 | . . . 4 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 → 𝐶 ∈ Cat) |
| 4 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 1, 2, 4 | sectrcl2 49012 | . . . 4 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 6 | 3, 5 | jca 511 | . . 3 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))) |
| 7 | catcsect.c | . . . . . . 7 ⊢ 𝐶 = (CatCat‘𝑈) | |
| 8 | catcsect.h | . . . . . . 7 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 9 | simpl 482 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 10 | 7, 8, 9 | catcrcl 49384 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → 𝑈 ∈ V) |
| 11 | 7 | catccat 18070 | . . . . . 6 ⊢ (𝑈 ∈ V → 𝐶 ∈ Cat) |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → 𝐶 ∈ Cat) |
| 13 | 7, 8, 9, 4 | catcrcl2 49385 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 14 | 12, 13 | jca 511 | . . . 4 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))) |
| 15 | 14 | 3adant3 1132 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) → (𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))) |
| 16 | eqid 2729 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 17 | eqid 2729 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 18 | simpl 482 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) | |
| 19 | simprl 770 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑋 ∈ (Base‘𝐶)) | |
| 20 | simprr 772 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → 𝑌 ∈ (Base‘𝐶)) | |
| 21 | 4, 8, 16, 17, 1, 18, 19, 20 | issect 17715 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 22 | 6, 15, 21 | pm5.21nii 378 | . 2 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) |
| 23 | df-3an 1088 | . 2 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
| 24 | 14, 19 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → 𝑋 ∈ (Base‘𝐶)) |
| 25 | 14, 20 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → 𝑌 ∈ (Base‘𝐶)) |
| 26 | 7, 8, 9 | elcatchom 49386 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → 𝐹 ∈ (𝑋 Func 𝑌)) |
| 27 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → 𝐺 ∈ (𝑌𝐻𝑋)) | |
| 28 | 7, 8, 27 | elcatchom 49386 | . . . . 5 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → 𝐺 ∈ (𝑌 Func 𝑋)) |
| 29 | 7, 4, 10, 16, 24, 25, 24, 26, 28 | catcco 18067 | . . . 4 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = (𝐺 ∘func 𝐹)) |
| 30 | catcsect.i | . . . . 5 ⊢ 𝐼 = (idfunc‘𝑋) | |
| 31 | 7, 4, 17, 30, 10, 24 | catcid 18069 | . . . 4 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → ((Id‘𝐶)‘𝑋) = 𝐼) |
| 32 | 29, 31 | eqeq12d 2745 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) → ((𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ↔ (𝐺 ∘func 𝐹) = 𝐼)) |
| 33 | 32 | pm5.32i 574 | . 2 ⊢ (((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺 ∘func 𝐹) = 𝐼)) |
| 34 | 22, 23, 33 | 3bitri 297 | 1 ⊢ (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺 ∘func 𝐹) = 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Hom chom 17231 compcco 17232 Catccat 17625 Idccid 17626 Sectcsect 17706 idfunccidfu 17817 ∘func ccofu 17818 CatCatccatc 18060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-sect 17709 df-func 17820 df-idfu 17821 df-cofu 17822 df-catc 18061 |
| This theorem is referenced by: catcinv 49388 uobeq2 49390 |
| Copyright terms: Public domain | W3C validator |