| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idepi | Structured version Visualization version GIF version | ||
| Description: An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
| Ref | Expression |
|---|---|
| idmon.b | ⊢ 𝐵 = (Base‘𝐶) |
| idmon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| idmon.i | ⊢ 1 = (Id‘𝐶) |
| idmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
| Ref | Expression |
|---|---|
| idepi | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idmon.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | idmon.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | idmon.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 4 | idmon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | idmon.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | catidcl 17699 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 7 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝐶 ∈ Cat) |
| 8 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑋 ∈ 𝐵) |
| 9 | eqid 2736 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑧 ∈ 𝐵) | |
| 11 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑔 ∈ (𝑋𝐻𝑧)) | |
| 12 | 1, 2, 3, 7, 8, 9, 10, 11 | catrid 17701 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → (𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = 𝑔) |
| 13 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ℎ ∈ (𝑋𝐻𝑧)) | |
| 14 | 1, 2, 3, 7, 8, 9, 10, 13 | catrid 17701 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = ℎ) |
| 15 | 12, 14 | eqeq12d 2752 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) ↔ 𝑔 = ℎ)) |
| 16 | 15 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)) |
| 17 | 16 | ralrimivvva 3191 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑋𝐻𝑧)∀ℎ ∈ (𝑋𝐻𝑧)((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)) |
| 18 | idepi.e | . . 3 ⊢ 𝐸 = (Epi‘𝐶) | |
| 19 | 1, 2, 9, 18, 4, 5, 5 | isepi2 17759 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋) ∈ (𝑋𝐸𝑋) ↔ (( 1 ‘𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑋𝐻𝑧)∀ℎ ∈ (𝑋𝐻𝑧)((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)))) |
| 20 | 6, 17, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 〈cop 4612 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 compcco 17288 Catccat 17681 Idccid 17682 Epicepi 17747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-oppc 17729 df-mon 17748 df-epi 17749 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |