![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idepi | Structured version Visualization version GIF version |
Description: An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
idmon.b | ⊢ 𝐵 = (Base‘𝐶) |
idmon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
idmon.i | ⊢ 1 = (Id‘𝐶) |
idmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
idepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
Ref | Expression |
---|---|
idepi | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idmon.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | idmon.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | idmon.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
4 | idmon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | idmon.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | catidcl 17621 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
7 | 4 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝐶 ∈ Cat) |
8 | 5 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑋 ∈ 𝐵) |
9 | eqid 2733 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
10 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑧 ∈ 𝐵) | |
11 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑔 ∈ (𝑋𝐻𝑧)) | |
12 | 1, 2, 3, 7, 8, 9, 10, 11 | catrid 17623 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → (𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = 𝑔) |
13 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ℎ ∈ (𝑋𝐻𝑧)) | |
14 | 1, 2, 3, 7, 8, 9, 10, 13 | catrid 17623 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = ℎ) |
15 | 12, 14 | eqeq12d 2749 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) ↔ 𝑔 = ℎ)) |
16 | 15 | biimpd 228 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)) |
17 | 16 | ralrimivvva 3204 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑋𝐻𝑧)∀ℎ ∈ (𝑋𝐻𝑧)((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)) |
18 | idepi.e | . . 3 ⊢ 𝐸 = (Epi‘𝐶) | |
19 | 1, 2, 9, 18, 4, 5, 5 | isepi2 17683 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋) ∈ (𝑋𝐸𝑋) ↔ (( 1 ‘𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑋𝐻𝑧)∀ℎ ∈ (𝑋𝐻𝑧)((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)))) |
20 | 6, 17, 19 | mpbir2and 712 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 〈cop 4632 ‘cfv 6539 (class class class)co 7403 Basecbs 17139 Hom chom 17203 compcco 17204 Catccat 17603 Idccid 17604 Epicepi 17671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-5 12273 df-6 12274 df-7 12275 df-8 12276 df-9 12277 df-n0 12468 df-z 12554 df-dec 12673 df-sets 17092 df-slot 17110 df-ndx 17122 df-base 17140 df-hom 17216 df-cco 17217 df-cat 17607 df-cid 17608 df-oppc 17651 df-mon 17672 df-epi 17673 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |