| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idepi | Structured version Visualization version GIF version | ||
| Description: An identity arrow, or an identity morphism, is an epimorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
| Ref | Expression |
|---|---|
| idmon.b | ⊢ 𝐵 = (Base‘𝐶) |
| idmon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| idmon.i | ⊢ 1 = (Id‘𝐶) |
| idmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
| Ref | Expression |
|---|---|
| idepi | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idmon.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | idmon.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | idmon.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 4 | idmon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | idmon.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | catidcl 17650 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 7 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝐶 ∈ Cat) |
| 8 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑋 ∈ 𝐵) |
| 9 | eqid 2730 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑧 ∈ 𝐵) | |
| 11 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → 𝑔 ∈ (𝑋𝐻𝑧)) | |
| 12 | 1, 2, 3, 7, 8, 9, 10, 11 | catrid 17652 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → (𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = 𝑔) |
| 13 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ℎ ∈ (𝑋𝐻𝑧)) | |
| 14 | 1, 2, 3, 7, 8, 9, 10, 13 | catrid 17652 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = ℎ) |
| 15 | 12, 14 | eqeq12d 2746 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) ↔ 𝑔 = ℎ)) |
| 16 | 15 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑋𝐻𝑧) ∧ ℎ ∈ (𝑋𝐻𝑧))) → ((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)) |
| 17 | 16 | ralrimivvva 3184 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑋𝐻𝑧)∀ℎ ∈ (𝑋𝐻𝑧)((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)) |
| 18 | idepi.e | . . 3 ⊢ 𝐸 = (Epi‘𝐶) | |
| 19 | 1, 2, 9, 18, 4, 5, 5 | isepi2 17710 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋) ∈ (𝑋𝐸𝑋) ↔ (( 1 ‘𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑋𝐻𝑧)∀ℎ ∈ (𝑋𝐻𝑧)((𝑔(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) = (ℎ(〈𝑋, 𝑋〉(comp‘𝐶)𝑧)( 1 ‘𝑋)) → 𝑔 = ℎ)))) |
| 20 | 6, 17, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐸𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 〈cop 4598 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Idccid 17633 Epicepi 17698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-oppc 17680 df-mon 17699 df-epi 17700 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |