Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ad5antr 731 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mhmmnd 18697 neiptopnei 22283 neitx 22758 ustex3sym 23369 restutop 23389 ustuqtop4 23396 utopreg 23404 xrge0tsms 23997 f1otrg 27232 nn0xmulclb 31094 xrge0tsmsd 31317 imaslmod 31553 elrspunidl 31606 rhmpreimaprmidl 31627 qsidomlem1 31628 mxidlprm 31640 extdg1id 31738 pstmxmet 31847 esumfsup 32038 esum2dlem 32060 esum2d 32061 omssubadd 32267 eulerpartlemgvv 32343 signstfvneq0 32551 satffunlem2lem1 33366 noetainflem4 33943 matunitlindflem2 35774 dffltz 40471 eldioph2 40584 limcrecl 43170 icccncfext 43428 ioodvbdlimc1lem2 43473 ioodvbdlimc2lem 43475 stoweidlem60 43601 fourierdlem77 43724 fourierdlem80 43727 fourierdlem103 43750 fourierdlem104 43751 etransclem35 43810 |
Copyright terms: Public domain | W3C validator |