![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ad5antr 733 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: mhmmnd 18947 neiptopnei 22636 neitx 23111 ustex3sym 23722 restutop 23742 ustuqtop4 23749 utopreg 23757 xrge0tsms 24350 noetainflem4 27243 f1otrg 28122 nn0xmulclb 31984 xrge0tsmsd 32209 imaslmod 32468 elrspunidl 32546 rhmpreimaprmidl 32570 qsidomlem1 32571 mxidlprm 32586 extdg1id 32742 pstmxmet 32877 esumfsup 33068 esum2dlem 33090 esum2d 33091 omssubadd 33299 eulerpartlemgvv 33375 signstfvneq0 33583 satffunlem2lem1 34395 matunitlindflem2 36485 aks6d1c2p2 40957 dffltz 41376 eldioph2 41500 limcrecl 44345 icccncfext 44603 ioodvbdlimc1lem2 44648 ioodvbdlimc2lem 44650 stoweidlem60 44776 fourierdlem77 44899 fourierdlem80 44902 fourierdlem103 44925 fourierdlem104 44926 etransclem35 44985 |
Copyright terms: Public domain | W3C validator |