![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ad5antr 732 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: mhmmnd 19025 neiptopnei 23054 neitx 23529 ustex3sym 24140 restutop 24160 ustuqtop4 24167 utopreg 24175 xrge0tsms 24768 noetainflem4 27691 f1otrg 28693 nn0xmulclb 32559 xrge0tsmsd 32789 imaslmod 33083 elrspunidl 33162 rhmpreimaprmidl 33185 qsidomlem1 33186 mxidlprm 33201 extdg1id 33360 pstmxmet 33503 esumfsup 33694 esum2dlem 33716 esum2d 33717 omssubadd 33925 eulerpartlemgvv 34001 signstfvneq0 34209 satffunlem2lem1 35019 matunitlindflem2 37095 aks6d1c2p2 41594 dffltz 42061 eldioph2 42185 limcrecl 45019 icccncfext 45277 ioodvbdlimc1lem2 45322 ioodvbdlimc2lem 45324 stoweidlem60 45450 fourierdlem77 45573 fourierdlem80 45576 fourierdlem103 45599 fourierdlem104 45600 etransclem35 45659 |
Copyright terms: Public domain | W3C validator |