![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ad5antr 734 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mhmmnd 19095 neiptopnei 23156 neitx 23631 ustex3sym 24242 restutop 24262 ustuqtop4 24269 utopreg 24277 xrge0tsms 24870 noetainflem4 27800 f1otrg 28894 nn0xmulclb 32782 xrge0tsmsd 33048 elrgspnlem4 33235 imaslmod 33361 elrspunidl 33436 rhmpreimaprmidl 33459 qsidomlem1 33460 mxidlprm 33478 1arithidom 33545 dfufd2 33558 extdg1id 33691 pstmxmet 33858 esumfsup 34051 esum2dlem 34073 esum2d 34074 omssubadd 34282 eulerpartlemgvv 34358 signstfvneq0 34566 satffunlem2lem1 35389 matunitlindflem2 37604 aks6d1c2p2 42101 dffltz 42621 eldioph2 42750 limcrecl 45585 icccncfext 45843 ioodvbdlimc1lem2 45888 ioodvbdlimc2lem 45890 stoweidlem60 46016 fourierdlem77 46139 fourierdlem80 46142 fourierdlem103 46165 fourierdlem104 46166 etransclem35 46225 |
Copyright terms: Public domain | W3C validator |