Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ad5antr 730 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mhmmnd 18612 neiptopnei 22191 neitx 22666 ustex3sym 23277 restutop 23297 ustuqtop4 23304 utopreg 23312 xrge0tsms 23903 f1otrg 27136 nn0xmulclb 30996 xrge0tsmsd 31219 imaslmod 31455 elrspunidl 31508 rhmpreimaprmidl 31529 qsidomlem1 31530 mxidlprm 31542 extdg1id 31640 pstmxmet 31749 esumfsup 31938 esum2dlem 31960 esum2d 31961 omssubadd 32167 eulerpartlemgvv 32243 signstfvneq0 32451 satffunlem2lem1 33266 noetainflem4 33870 matunitlindflem2 35701 dffltz 40387 eldioph2 40500 limcrecl 43060 icccncfext 43318 ioodvbdlimc1lem2 43363 ioodvbdlimc2lem 43365 stoweidlem60 43491 fourierdlem77 43614 fourierdlem80 43617 fourierdlem103 43640 fourierdlem104 43641 etransclem35 43700 |
Copyright terms: Public domain | W3C validator |