| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | ad5antr 734 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mhmmnd 19003 neiptopnei 23026 neitx 23501 ustex3sym 24112 restutop 24132 ustuqtop4 24139 utopreg 24147 xrge0tsms 24730 noetainflem4 27659 f1otrg 28805 nn0xmulclb 32701 xrge0tsmsd 33009 elrgspnlem4 33203 imaslmod 33331 elrspunidl 33406 rhmpreimaprmidl 33429 qsidomlem1 33430 mxidlprm 33448 1arithidom 33515 dfufd2 33528 extdg1id 33668 pstmxmet 33894 esumfsup 34067 esum2dlem 34089 esum2d 34090 omssubadd 34298 eulerpartlemgvv 34374 signstfvneq0 34570 satffunlem2lem1 35398 matunitlindflem2 37618 aks6d1c2p2 42114 dffltz 42629 eldioph2 42757 limcrecl 45634 icccncfext 45892 ioodvbdlimc1lem2 45937 ioodvbdlimc2lem 45939 stoweidlem60 46065 fourierdlem77 46188 fourierdlem80 46191 fourierdlem103 46214 fourierdlem104 46215 etransclem35 46274 |
| Copyright terms: Public domain | W3C validator |