| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | ad5antr 734 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mhmmnd 18961 neiptopnei 23035 neitx 23510 ustex3sym 24121 restutop 24141 ustuqtop4 24148 utopreg 24156 xrge0tsms 24739 noetainflem4 27668 f1otrg 28834 nn0xmulclb 32727 xrge0tsmsd 33028 elrgspnlem4 33195 imaslmod 33300 elrspunidl 33375 rhmpreimaprmidl 33398 qsidomlem1 33399 mxidlprm 33417 1arithidom 33484 dfufd2 33497 extdg1id 33637 pstmxmet 33863 esumfsup 34036 esum2dlem 34058 esum2d 34059 omssubadd 34267 eulerpartlemgvv 34343 signstfvneq0 34539 satffunlem2lem1 35376 matunitlindflem2 37596 aks6d1c2p2 42092 dffltz 42607 eldioph2 42735 limcrecl 45611 icccncfext 45869 ioodvbdlimc1lem2 45914 ioodvbdlimc2lem 45916 stoweidlem60 46042 fourierdlem77 46165 fourierdlem80 46168 fourierdlem103 46191 fourierdlem104 46192 etransclem35 46251 |
| Copyright terms: Public domain | W3C validator |