| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | ad5antr 734 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mhmmnd 19052 neiptopnei 23075 neitx 23550 ustex3sym 24161 restutop 24181 ustuqtop4 24188 utopreg 24196 xrge0tsms 24779 noetainflem4 27709 f1otrg 28855 nn0xmulclb 32753 xrge0tsmsd 33061 elrgspnlem4 33245 imaslmod 33373 elrspunidl 33448 rhmpreimaprmidl 33471 qsidomlem1 33472 mxidlprm 33490 1arithidom 33557 dfufd2 33570 extdg1id 33712 pstmxmet 33933 esumfsup 34106 esum2dlem 34128 esum2d 34129 omssubadd 34337 eulerpartlemgvv 34413 signstfvneq0 34609 satffunlem2lem1 35431 matunitlindflem2 37646 aks6d1c2p2 42137 dffltz 42624 eldioph2 42752 limcrecl 45625 icccncfext 45883 ioodvbdlimc1lem2 45928 ioodvbdlimc2lem 45930 stoweidlem60 46056 fourierdlem77 46179 fourierdlem80 46182 fourierdlem103 46205 fourierdlem104 46206 etransclem35 46265 |
| Copyright terms: Public domain | W3C validator |