![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ad5antr 732 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mhmmnd 18949 neiptopnei 22643 neitx 23118 ustex3sym 23729 restutop 23749 ustuqtop4 23756 utopreg 23764 xrge0tsms 24357 noetainflem4 27250 f1otrg 28160 nn0xmulclb 32022 xrge0tsmsd 32250 imaslmod 32509 elrspunidl 32591 rhmpreimaprmidl 32615 qsidomlem1 32616 mxidlprm 32631 extdg1id 32801 pstmxmet 32946 esumfsup 33137 esum2dlem 33159 esum2d 33160 omssubadd 33368 eulerpartlemgvv 33444 signstfvneq0 33652 satffunlem2lem1 34464 matunitlindflem2 36571 aks6d1c2p2 41043 dffltz 41458 eldioph2 41582 limcrecl 44424 icccncfext 44682 ioodvbdlimc1lem2 44727 ioodvbdlimc2lem 44729 stoweidlem60 44855 fourierdlem77 44978 fourierdlem80 44981 fourierdlem103 45004 fourierdlem104 45005 etransclem35 45064 |
Copyright terms: Public domain | W3C validator |