| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | ad5antr 734 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mhmmnd 18974 neiptopnei 23045 neitx 23520 ustex3sym 24131 restutop 24150 ustuqtop4 24157 utopreg 24165 xrge0tsms 24748 noetainflem4 27677 f1otrg 28847 nn0xmulclb 32749 xrge0tsmsd 33037 elrgspnlem4 33207 imaslmod 33313 elrspunidl 33388 rhmpreimaprmidl 33411 qsidomlem1 33412 mxidlprm 33430 1arithidom 33497 dfufd2 33510 extdg1id 33674 pstmxmet 33905 esumfsup 34078 esum2dlem 34100 esum2d 34101 omssubadd 34308 eulerpartlemgvv 34384 signstfvneq0 34580 satffunlem2lem1 35436 matunitlindflem2 37656 aks6d1c2p2 42151 dffltz 42666 eldioph2 42794 limcrecl 45668 icccncfext 45924 ioodvbdlimc1lem2 45969 ioodvbdlimc2lem 45971 stoweidlem60 46097 fourierdlem77 46220 fourierdlem80 46223 fourierdlem103 46246 fourierdlem104 46247 etransclem35 46306 |
| Copyright terms: Public domain | W3C validator |