| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | ad5antr 734 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mhmmnd 18979 neiptopnei 23048 neitx 23523 ustex3sym 24134 restutop 24153 ustuqtop4 24160 utopreg 24168 xrge0tsms 24751 noetainflem4 27680 f1otrg 28850 nn0xmulclb 32758 xrge0tsmsd 33049 elrgspnlem4 33219 imaslmod 33325 elrspunidl 33400 rhmpreimaprmidl 33423 qsidomlem1 33424 mxidlprm 33442 1arithidom 33509 dfufd2 33522 extdg1id 33700 pstmxmet 33931 esumfsup 34104 esum2dlem 34126 esum2d 34127 omssubadd 34334 eulerpartlemgvv 34410 signstfvneq0 34606 satffunlem2lem1 35469 matunitlindflem2 37677 aks6d1c2p2 42232 dffltz 42752 eldioph2 42879 limcrecl 45753 icccncfext 46009 ioodvbdlimc1lem2 46054 ioodvbdlimc2lem 46056 stoweidlem60 46182 fourierdlem77 46305 fourierdlem80 46308 fourierdlem103 46331 fourierdlem104 46332 etransclem35 46391 |
| Copyright terms: Public domain | W3C validator |