| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version | ||
| Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
| Ref | Expression |
|---|---|
| simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | 1 | ad5antr 734 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mhmmnd 18996 neiptopnei 23019 neitx 23494 ustex3sym 24105 restutop 24125 ustuqtop4 24132 utopreg 24140 xrge0tsms 24723 noetainflem4 27652 f1otrg 28798 nn0xmulclb 32694 xrge0tsmsd 33002 elrgspnlem4 33196 imaslmod 33324 elrspunidl 33399 rhmpreimaprmidl 33422 qsidomlem1 33423 mxidlprm 33441 1arithidom 33508 dfufd2 33521 extdg1id 33661 pstmxmet 33887 esumfsup 34060 esum2dlem 34082 esum2d 34083 omssubadd 34291 eulerpartlemgvv 34367 signstfvneq0 34563 satffunlem2lem1 35391 matunitlindflem2 37611 aks6d1c2p2 42107 dffltz 42622 eldioph2 42750 limcrecl 45627 icccncfext 45885 ioodvbdlimc1lem2 45930 ioodvbdlimc2lem 45932 stoweidlem60 46058 fourierdlem77 46181 fourierdlem80 46184 fourierdlem103 46207 fourierdlem104 46208 etransclem35 46267 |
| Copyright terms: Public domain | W3C validator |