![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ad5antr 733 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mhmmnd 19104 neiptopnei 23161 neitx 23636 ustex3sym 24247 restutop 24267 ustuqtop4 24274 utopreg 24282 xrge0tsms 24875 noetainflem4 27803 f1otrg 28897 nn0xmulclb 32778 xrge0tsmsd 33041 imaslmod 33346 elrspunidl 33421 rhmpreimaprmidl 33444 qsidomlem1 33445 mxidlprm 33463 1arithidom 33530 dfufd2 33543 extdg1id 33676 pstmxmet 33843 esumfsup 34034 esum2dlem 34056 esum2d 34057 omssubadd 34265 eulerpartlemgvv 34341 signstfvneq0 34549 satffunlem2lem1 35372 matunitlindflem2 37577 aks6d1c2p2 42076 dffltz 42589 eldioph2 42718 limcrecl 45550 icccncfext 45808 ioodvbdlimc1lem2 45853 ioodvbdlimc2lem 45855 stoweidlem60 45981 fourierdlem77 46104 fourierdlem80 46107 fourierdlem103 46130 fourierdlem104 46131 etransclem35 46190 |
Copyright terms: Public domain | W3C validator |