Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2 Structured version   Visualization version   GIF version

Theorem eldioph2 40500
Description: Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 40490. (Contributed by Stefan O'Rear, 8-Oct-2014.) (Revised by Stefan O'Rear, 5-Jun-2015.)
Assertion
Ref Expression
eldioph2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑡,𝑃,𝑢   𝑡,𝑆,𝑢   𝑡,𝑁,𝑢

Proof of Theorem eldioph2
Dummy variables 𝑎 𝑏 𝑐 𝑒 𝑔 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mzpcompact2 40490 . . 3 (𝑃 ∈ (mzPoly‘𝑆) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))))
213ad2ant3 1133 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))))
3 fveq1 6755 . . . . . . . . . 10 (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))) → (𝑃𝑢) = ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢))
43eqeq1d 2740 . . . . . . . . 9 (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))) → ((𝑃𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0))
54anbi2d 628 . . . . . . . 8 (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)))
65rexbidv 3225 . . . . . . 7 (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))) → (∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)))
76abbidv 2808 . . . . . 6 (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)})
87ad2antll 725 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)})
9 simplll 771 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑁 ∈ ℕ0)
10 simplrl 773 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑎 ∈ Fin)
11 fzfi 13620 . . . . . . . . . . . 12 (1...𝑁) ∈ Fin
12 unfi 8917 . . . . . . . . . . . 12 ((𝑎 ∈ Fin ∧ (1...𝑁) ∈ Fin) → (𝑎 ∪ (1...𝑁)) ∈ Fin)
1310, 11, 12sylancl 585 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (𝑎 ∪ (1...𝑁)) ∈ Fin)
14 ssun2 4103 . . . . . . . . . . . 12 (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))
1514a1i 11 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁)))
16 eldioph2lem1 40498 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (𝑎 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))) → ∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
179, 13, 15, 16syl3anc 1369 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → ∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
18 f1ococnv2 6726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (𝑑𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁))))
1918ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁))))
2019reseq1d 5879 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑑𝑑) ↾ 𝑎) = (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎))
21 ssun1 4102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑎 ⊆ (𝑎 ∪ (1...𝑁))
22 resabs1 5910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑎 ⊆ (𝑎 ∪ (1...𝑁)) → (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎))
2321, 22ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎)
2420, 23eqtr2di 2796 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = ((𝑑𝑑) ↾ 𝑎))
25 resco 6143 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑𝑑) ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎))
2624, 25eqtrdi 2795 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎)))
2726adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → ( I ↾ 𝑎) = (𝑑 ∘ (𝑑𝑎)))
2827coeq2d 5760 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒 ∘ (𝑑 ∘ (𝑑𝑎))))
29 coires1 6157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒𝑎)
30 coass 6158 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒𝑑) ∘ (𝑑𝑎)) = (𝑒 ∘ (𝑑 ∘ (𝑑𝑎)))
3130eqcomi 2747 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 ∘ (𝑑 ∘ (𝑑𝑎))) = ((𝑒𝑑) ∘ (𝑑𝑎))
3228, 29, 313eqtr3g 2802 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒𝑎) = ((𝑒𝑑) ∘ (𝑑𝑎)))
3332fveq2d 6760 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑏‘(𝑒𝑎)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
34 ovexd 7290 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (1...𝑐) ∈ V)
35 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → 𝑒 ∈ (ℤ ↑m 𝑆))
36 f1of1 6699 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)))
3736ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)))
38 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑎𝑆)
39 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) → (1...𝑁) ⊆ 𝑆)
4039ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (1...𝑁) ⊆ 𝑆)
4138, 40unssd 4116 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆)
4241ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆)
43 f1ss 6660 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)) ∧ (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) → 𝑑:(1...𝑐)–1-1𝑆)
4437, 42, 43syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1𝑆)
45 f1f 6654 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑑:(1...𝑐)–1-1𝑆𝑑:(1...𝑐)⟶𝑆)
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)⟶𝑆)
4746adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → 𝑑:(1...𝑐)⟶𝑆)
48 mapco2g 40452 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑐) ∈ V ∧ 𝑒 ∈ (ℤ ↑m 𝑆) ∧ 𝑑:(1...𝑐)⟶𝑆) → (𝑒𝑑) ∈ (ℤ ↑m (1...𝑐)))
4934, 35, 47, 48syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒𝑑) ∈ (ℤ ↑m (1...𝑐)))
50 coeq1 5755 . . . . . . . . . . . . . . . . . . . . . . . 24 ( = (𝑒𝑑) → ( ∘ (𝑑𝑎)) = ((𝑒𝑑) ∘ (𝑑𝑎)))
5150fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . 23 ( = (𝑒𝑑) → (𝑏‘( ∘ (𝑑𝑎))) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
52 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 ( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) = ( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))
53 fvex 6769 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))) ∈ V
5451, 52, 53fvmpt 6857 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒𝑑) ∈ (ℤ ↑m (1...𝑐)) → (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
5549, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)) = (𝑏‘((𝑒𝑑) ∘ (𝑑𝑎))))
5633, 55eqtr4d 2781 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑏‘(𝑒𝑎)) = (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))
5756mpteq2dva 5170 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))) = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑))))
5857fveq1d 6758 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢))
5958eqeq1d 2740 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0))
6059anbi2d 628 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)))
6160rexbidv 3225 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)))
6261abbidv 2808 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)})
63 simplrl 773 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → 𝑆 ∈ V)
6463ad3antrrr 726 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑆 ∈ V)
65 simprr 769 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
66 diophrw 40497 . . . . . . . . . . . . . . 15 ((𝑆 ∈ V ∧ 𝑑:(1...𝑐)–1-1𝑆 ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
6764, 44, 65, 66syl3anc 1369 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘(𝑒𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
6862, 67eqtrd 2778 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)})
69 simp-5l 781 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑁 ∈ ℕ0)
70 simplrl 773 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐 ∈ (ℤ𝑁))
71 ovexd 7290 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (1...𝑐) ∈ V)
72 simplrr 774 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → 𝑏 ∈ (mzPoly‘𝑎))
7372ad2antrr 722 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘𝑎))
74 f1ocnv 6712 . . . . . . . . . . . . . . . . . 18 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐))
75 f1of 6700 . . . . . . . . . . . . . . . . . 18 (𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐) → 𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐))
7674, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐))
77 fssres 6624 . . . . . . . . . . . . . . . . 17 ((𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐) ∧ 𝑎 ⊆ (𝑎 ∪ (1...𝑁))) → (𝑑𝑎):𝑎⟶(1...𝑐))
7876, 21, 77sylancl 585 . . . . . . . . . . . . . . . 16 (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (𝑑𝑎):𝑎⟶(1...𝑐))
7978ad2antrl 724 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑𝑎):𝑎⟶(1...𝑐))
80 mzprename 40487 . . . . . . . . . . . . . . 15 (((1...𝑐) ∈ V ∧ 𝑏 ∈ (mzPoly‘𝑎) ∧ (𝑑𝑎):𝑎⟶(1...𝑐)) → ( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐)))
8171, 73, 79, 80syl3anc 1369 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐)))
82 eldioph 40496 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑐 ∈ (ℤ𝑁) ∧ ( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎)))) ∈ (mzPoly‘(1...𝑐))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁))
8369, 70, 81, 82syl3anc 1369 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ (( ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘( ∘ (𝑑𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁))
8468, 83eqeltrd 2839 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
8584ex 412 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (ℤ𝑁) ∧ 𝑑 ∈ V)) → ((𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))
8685rexlimdvva 3222 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → (∃𝑐 ∈ (ℤ𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))
8717, 86mpd 15 . . . . . . . . 9 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
8887exp31 419 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))))
89883adant3 1130 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))))
9089imp31 417 . . . . . 6 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
9190adantrr 713 . . . . 5 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))
928, 91eqeltrd 2839 . . . 4 ((((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
9392ex 412 . . 3 (((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → ((𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁)))
9493rexlimdvva 3222 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎𝑆𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁)))
952, 94mpd 15 1 ((𝑁 ∈ ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃𝑢) = 0)} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  Vcvv 3422  cun 3881  wss 3883  cmpt 5153   I cid 5479  ccnv 5579  cres 5582  ccom 5584  wf 6414  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  0cc0 10802  1c1 10803  0cn0 12163  cz 12249  cuz 12511  ...cfz 13168  mzPolycmzp 40460  Diophcdioph 40493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-mzpcl 40461  df-mzp 40462  df-dioph 40494
This theorem is referenced by:  eldioph2b  40501  diophin  40510  diophun  40511
  Copyright terms: Public domain W3C validator