| Step | Hyp | Ref
| Expression |
| 1 | | mzpcompact2 42763 |
. . 3
⊢ (𝑃 ∈ (mzPoly‘𝑆) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) |
| 2 | 1 | 3ad2ant3 1136 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) |
| 3 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → (𝑃‘𝑢) = ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢)) |
| 4 | 3 | eqeq1d 2739 |
. . . . . . . . 9
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → ((𝑃‘𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)) |
| 5 | 4 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0))) |
| 6 | 5 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → (∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0))) |
| 7 | 6 | abbidv 2808 |
. . . . . 6
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)}) |
| 8 | 7 | ad2antll 729 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)}) |
| 9 | | simplll 775 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → 𝑁 ∈
ℕ0) |
| 10 | | simplrl 777 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → 𝑎 ∈ Fin) |
| 11 | | fzfi 14013 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ∈
Fin |
| 12 | | unfi 9211 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ Fin ∧ (1...𝑁) ∈ Fin) → (𝑎 ∪ (1...𝑁)) ∈ Fin) |
| 13 | 10, 11, 12 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (𝑎 ∪ (1...𝑁)) ∈ Fin) |
| 14 | | ssun2 4179 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
(𝑎 ∪ (1...𝑁)) |
| 15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))) |
| 16 | | eldioph2lem1 42771 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))) → ∃𝑐 ∈ (ℤ≥‘𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
| 17 | 9, 13, 15, 16 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → ∃𝑐 ∈ (ℤ≥‘𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
| 18 | | f1ococnv2 6875 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (𝑑 ∘ ◡𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁)))) |
| 19 | 18 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑 ∘ ◡𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁)))) |
| 20 | 19 | reseq1d 5996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑑 ∘ ◡𝑑) ↾ 𝑎) = (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎)) |
| 21 | | ssun1 4178 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑎 ⊆ (𝑎 ∪ (1...𝑁)) |
| 22 | | resabs1 6024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (𝑎 ∪ (1...𝑁)) → (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎)) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (( I
↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎) |
| 24 | 20, 23 | eqtr2di 2794 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = ((𝑑 ∘ ◡𝑑) ↾ 𝑎)) |
| 25 | | resco 6270 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑑 ∘ ◡𝑑) ↾ 𝑎) = (𝑑 ∘ (◡𝑑 ↾ 𝑎)) |
| 26 | 24, 25 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = (𝑑 ∘ (◡𝑑 ↾ 𝑎))) |
| 27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → ( I ↾ 𝑎) = (𝑑 ∘ (◡𝑑 ↾ 𝑎))) |
| 28 | 27 | coeq2d 5873 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒 ∘ (𝑑 ∘ (◡𝑑 ↾ 𝑎)))) |
| 29 | | coires1 6284 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒 ↾ 𝑎) |
| 30 | | coass 6285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)) = (𝑒 ∘ (𝑑 ∘ (◡𝑑 ↾ 𝑎))) |
| 31 | 30 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 ∘ (𝑑 ∘ (◡𝑑 ↾ 𝑎))) = ((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)) |
| 32 | 28, 29, 31 | 3eqtr3g 2800 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒 ↾ 𝑎) = ((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎))) |
| 33 | 32 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑏‘(𝑒 ↾ 𝑎)) = (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)))) |
| 34 | | ovexd 7466 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (1...𝑐) ∈ V) |
| 35 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → 𝑒 ∈ (ℤ ↑m 𝑆)) |
| 36 | | f1of1 6847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁))) |
| 37 | 36 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁))) |
| 38 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → 𝑎 ⊆ 𝑆) |
| 39 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) → (1...𝑁) ⊆ 𝑆) |
| 40 | 39 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (1...𝑁) ⊆ 𝑆) |
| 41 | 38, 40 | unssd 4192 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) |
| 43 | | f1ss 6809 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)) ∧ (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) → 𝑑:(1...𝑐)–1-1→𝑆) |
| 44 | 37, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1→𝑆) |
| 45 | | f1f 6804 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑:(1...𝑐)–1-1→𝑆 → 𝑑:(1...𝑐)⟶𝑆) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)⟶𝑆) |
| 47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → 𝑑:(1...𝑐)⟶𝑆) |
| 48 | | mapco2g 42725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...𝑐) ∈ V
∧ 𝑒 ∈ (ℤ
↑m 𝑆) ∧
𝑑:(1...𝑐)⟶𝑆) → (𝑒 ∘ 𝑑) ∈ (ℤ ↑m
(1...𝑐))) |
| 49 | 34, 35, 47, 48 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒 ∘ 𝑑) ∈ (ℤ ↑m
(1...𝑐))) |
| 50 | | coeq1 5868 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = (𝑒 ∘ 𝑑) → (ℎ ∘ (◡𝑑 ↾ 𝑎)) = ((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎))) |
| 51 | 50 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = (𝑒 ∘ 𝑑) → (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))) = (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)))) |
| 52 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ ∈ (ℤ
↑m (1...𝑐))
↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) = (ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) |
| 53 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎))) ∈ V |
| 54 | 51, 52, 53 | fvmpt 7016 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑒 ∘ 𝑑) ∈ (ℤ ↑m
(1...𝑐)) → ((ℎ ∈ (ℤ
↑m (1...𝑐))
↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)) = (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)))) |
| 55 | 49, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)) = (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)))) |
| 56 | 33, 55 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑏‘(𝑒 ↾ 𝑎)) = ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑))) |
| 57 | 56 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))) |
| 58 | 57 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢)) |
| 59 | 58 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0)) |
| 60 | 59 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0))) |
| 61 | 60 | rexbidv 3179 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0))) |
| 62 | 61 | abbidv 2808 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0)}) |
| 63 | | simplrl 777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → 𝑆 ∈ V) |
| 64 | 63 | ad3antrrr 730 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑆 ∈ V) |
| 65 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
| 66 | | diophrw 42770 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ V ∧ 𝑑:(1...𝑐)–1-1→𝑆 ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)}) |
| 67 | 64, 44, 65, 66 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)}) |
| 68 | 62, 67 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)}) |
| 69 | | simp-5l 785 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑁 ∈
ℕ0) |
| 70 | | simplrl 777 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐 ∈ (ℤ≥‘𝑁)) |
| 71 | | ovexd 7466 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (1...𝑐) ∈ V) |
| 72 | | simplrr 778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → 𝑏 ∈ (mzPoly‘𝑎)) |
| 73 | 72 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘𝑎)) |
| 74 | | f1ocnv 6860 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → ◡𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐)) |
| 75 | | f1of 6848 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐) → ◡𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐)) |
| 76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → ◡𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐)) |
| 77 | | fssres 6774 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐) ∧ 𝑎 ⊆ (𝑎 ∪ (1...𝑁))) → (◡𝑑 ↾ 𝑎):𝑎⟶(1...𝑐)) |
| 78 | 76, 21, 77 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (◡𝑑 ↾ 𝑎):𝑎⟶(1...𝑐)) |
| 79 | 78 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (◡𝑑 ↾ 𝑎):𝑎⟶(1...𝑐)) |
| 80 | | mzprename 42760 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑐) ∈ V
∧ 𝑏 ∈
(mzPoly‘𝑎) ∧
(◡𝑑 ↾ 𝑎):𝑎⟶(1...𝑐)) → (ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) ∈ (mzPoly‘(1...𝑐))) |
| 81 | 71, 73, 79, 80 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) ∈ (mzPoly‘(1...𝑐))) |
| 82 | | eldioph 42769 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑐 ∈
(ℤ≥‘𝑁) ∧ (ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) ∈ (mzPoly‘(1...𝑐))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁)) |
| 83 | 69, 70, 81, 82 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁)) |
| 84 | 68, 83 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
| 85 | 84 | ex 412 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) → ((𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))) |
| 86 | 85 | rexlimdvva 3213 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (∃𝑐 ∈ (ℤ≥‘𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))) |
| 87 | 17, 86 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
| 88 | 87 | exp31 419 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎 ⊆ 𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))) |
| 89 | 88 | 3adant3 1133 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎 ⊆ 𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))) |
| 90 | 89 | imp31 417 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
| 91 | 90 | adantrr 717 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
| 92 | 8, 91 | eqeltrd 2841 |
. . . 4
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
| 93 | 92 | ex 412 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → ((𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁))) |
| 94 | 93 | rexlimdvva 3213 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁))) |
| 95 | 2, 94 | mpd 15 |
1
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |