Step | Hyp | Ref
| Expression |
1 | | mzpcompact2 40490 |
. . 3
⊢ (𝑃 ∈ (mzPoly‘𝑆) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) |
2 | 1 | 3ad2ant3 1133 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) |
3 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → (𝑃‘𝑢) = ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢)) |
4 | 3 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → ((𝑃‘𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)) |
5 | 4 | anbi2d 628 |
. . . . . . . 8
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0))) |
6 | 5 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → (∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0))) |
7 | 6 | abbidv 2808 |
. . . . . 6
⊢ (𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)}) |
8 | 7 | ad2antll 725 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)}) |
9 | | simplll 771 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → 𝑁 ∈
ℕ0) |
10 | | simplrl 773 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → 𝑎 ∈ Fin) |
11 | | fzfi 13620 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ∈
Fin |
12 | | unfi 8917 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ Fin ∧ (1...𝑁) ∈ Fin) → (𝑎 ∪ (1...𝑁)) ∈ Fin) |
13 | 10, 11, 12 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (𝑎 ∪ (1...𝑁)) ∈ Fin) |
14 | | ssun2 4103 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
(𝑎 ∪ (1...𝑁)) |
15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))) |
16 | | eldioph2lem1 40498 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑎 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑎 ∪ (1...𝑁))) → ∃𝑐 ∈ (ℤ≥‘𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
17 | 9, 13, 15, 16 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → ∃𝑐 ∈ (ℤ≥‘𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) |
18 | | f1ococnv2 6726 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (𝑑 ∘ ◡𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁)))) |
19 | 18 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑 ∘ ◡𝑑) = ( I ↾ (𝑎 ∪ (1...𝑁)))) |
20 | 19 | reseq1d 5879 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑑 ∘ ◡𝑑) ↾ 𝑎) = (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎)) |
21 | | ssun1 4102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝑎 ⊆ (𝑎 ∪ (1...𝑁)) |
22 | | resabs1 5910 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑎 ⊆ (𝑎 ∪ (1...𝑁)) → (( I ↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎)) |
23 | 21, 22 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (( I
↾ (𝑎 ∪ (1...𝑁))) ↾ 𝑎) = ( I ↾ 𝑎) |
24 | 20, 23 | eqtr2di 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = ((𝑑 ∘ ◡𝑑) ↾ 𝑎)) |
25 | | resco 6143 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑑 ∘ ◡𝑑) ↾ 𝑎) = (𝑑 ∘ (◡𝑑 ↾ 𝑎)) |
26 | 24, 25 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ( I ↾ 𝑎) = (𝑑 ∘ (◡𝑑 ↾ 𝑎))) |
27 | 26 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → ( I ↾ 𝑎) = (𝑑 ∘ (◡𝑑 ↾ 𝑎))) |
28 | 27 | coeq2d 5760 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒 ∘ (𝑑 ∘ (◡𝑑 ↾ 𝑎)))) |
29 | | coires1 6157 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 ∘ ( I ↾ 𝑎)) = (𝑒 ↾ 𝑎) |
30 | | coass 6158 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)) = (𝑒 ∘ (𝑑 ∘ (◡𝑑 ↾ 𝑎))) |
31 | 30 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 ∘ (𝑑 ∘ (◡𝑑 ↾ 𝑎))) = ((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)) |
32 | 28, 29, 31 | 3eqtr3g 2802 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒 ↾ 𝑎) = ((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎))) |
33 | 32 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑏‘(𝑒 ↾ 𝑎)) = (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)))) |
34 | | ovexd 7290 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (1...𝑐) ∈ V) |
35 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → 𝑒 ∈ (ℤ ↑m 𝑆)) |
36 | | f1of1 6699 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁))) |
37 | 36 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁))) |
38 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → 𝑎 ⊆ 𝑆) |
39 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) → (1...𝑁) ⊆ 𝑆) |
40 | 39 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (1...𝑁) ⊆ 𝑆) |
41 | 38, 40 | unssd 4116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) |
42 | 41 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) |
43 | | f1ss 6660 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑑:(1...𝑐)–1-1→(𝑎 ∪ (1...𝑁)) ∧ (𝑎 ∪ (1...𝑁)) ⊆ 𝑆) → 𝑑:(1...𝑐)–1-1→𝑆) |
44 | 37, 42, 43 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)–1-1→𝑆) |
45 | | f1f 6654 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑑:(1...𝑐)–1-1→𝑆 → 𝑑:(1...𝑐)⟶𝑆) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑑:(1...𝑐)⟶𝑆) |
47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → 𝑑:(1...𝑐)⟶𝑆) |
48 | | mapco2g 40452 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((1...𝑐) ∈ V
∧ 𝑒 ∈ (ℤ
↑m 𝑆) ∧
𝑑:(1...𝑐)⟶𝑆) → (𝑒 ∘ 𝑑) ∈ (ℤ ↑m
(1...𝑐))) |
49 | 34, 35, 47, 48 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑒 ∘ 𝑑) ∈ (ℤ ↑m
(1...𝑐))) |
50 | | coeq1 5755 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (ℎ = (𝑒 ∘ 𝑑) → (ℎ ∘ (◡𝑑 ↾ 𝑎)) = ((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎))) |
51 | 50 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ = (𝑒 ∘ 𝑑) → (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))) = (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)))) |
52 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ℎ ∈ (ℤ
↑m (1...𝑐))
↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) = (ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) |
53 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎))) ∈ V |
54 | 51, 52, 53 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑒 ∘ 𝑑) ∈ (ℤ ↑m
(1...𝑐)) → ((ℎ ∈ (ℤ
↑m (1...𝑐))
↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)) = (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)))) |
55 | 49, 54 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)) = (𝑏‘((𝑒 ∘ 𝑑) ∘ (◡𝑑 ↾ 𝑎)))) |
56 | 33, 55 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) ∧ 𝑒 ∈ (ℤ ↑m 𝑆)) → (𝑏‘(𝑒 ↾ 𝑎)) = ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑))) |
57 | 56 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))) = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))) |
58 | 57 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢)) |
59 | 58 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0 ↔ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0)) |
60 | 59 | anbi2d 628 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0) ↔ (𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0))) |
61 | 60 | rexbidv 3225 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0) ↔ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0))) |
62 | 61 | abbidv 2808 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0)}) |
63 | | simplrl 773 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → 𝑆 ∈ V) |
64 | 63 | ad3antrrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑆 ∈ V) |
65 | | simprr 769 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) |
66 | | diophrw 40497 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ V ∧ 𝑑:(1...𝑐)–1-1→𝑆 ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)}) |
67 | 64, 44, 65, 66 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘(𝑒 ∘ 𝑑)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)}) |
68 | 62, 67 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} = {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)}) |
69 | | simp-5l 781 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑁 ∈
ℕ0) |
70 | | simplrl 773 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑐 ∈ (ℤ≥‘𝑁)) |
71 | | ovexd 7290 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (1...𝑐) ∈ V) |
72 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → 𝑏 ∈ (mzPoly‘𝑎)) |
73 | 72 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → 𝑏 ∈ (mzPoly‘𝑎)) |
74 | | f1ocnv 6712 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → ◡𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐)) |
75 | | f1of 6700 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝑑:(𝑎 ∪ (1...𝑁))–1-1-onto→(1...𝑐) → ◡𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐)) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → ◡𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐)) |
77 | | fssres 6624 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝑑:(𝑎 ∪ (1...𝑁))⟶(1...𝑐) ∧ 𝑎 ⊆ (𝑎 ∪ (1...𝑁))) → (◡𝑑 ↾ 𝑎):𝑎⟶(1...𝑐)) |
78 | 76, 21, 77 | sylancl 585 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) → (◡𝑑 ↾ 𝑎):𝑎⟶(1...𝑐)) |
79 | 78 | ad2antrl 724 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (◡𝑑 ↾ 𝑎):𝑎⟶(1...𝑐)) |
80 | | mzprename 40487 |
. . . . . . . . . . . . . . 15
⊢
(((1...𝑐) ∈ V
∧ 𝑏 ∈
(mzPoly‘𝑎) ∧
(◡𝑑 ↾ 𝑎):𝑎⟶(1...𝑐)) → (ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) ∈ (mzPoly‘(1...𝑐))) |
81 | 71, 73, 79, 80 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → (ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) ∈ (mzPoly‘(1...𝑐))) |
82 | | eldioph 40496 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑐 ∈
(ℤ≥‘𝑁) ∧ (ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎)))) ∈ (mzPoly‘(1...𝑐))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁)) |
83 | 69, 70, 81, 82 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑔 ∈ (ℕ0
↑m (1...𝑐))(𝑡 = (𝑔 ↾ (1...𝑁)) ∧ ((ℎ ∈ (ℤ ↑m (1...𝑐)) ↦ (𝑏‘(ℎ ∘ (◡𝑑 ↾ 𝑎))))‘𝑔) = 0)} ∈ (Dioph‘𝑁)) |
84 | 68, 83 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) ∧ (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
85 | 84 | ex 412 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ0 ∧ (𝑆 ∈ V ∧ (1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) ∧ (𝑐 ∈ (ℤ≥‘𝑁) ∧ 𝑑 ∈ V)) → ((𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))) |
86 | 85 | rexlimdvva 3222 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → (∃𝑐 ∈ (ℤ≥‘𝑁)∃𝑑 ∈ V (𝑑:(1...𝑐)–1-1-onto→(𝑎 ∪ (1...𝑁)) ∧ (𝑑 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁))) |
87 | 17, 86 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
88 | 87 | exp31 419 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎 ⊆ 𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))) |
89 | 88 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → ((𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎)) → (𝑎 ⊆ 𝑆 → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)))) |
90 | 89 | imp31 417 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ 𝑎 ⊆ 𝑆) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
91 | 90 | adantrr 713 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ ((𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
92 | 8, 91 | eqeltrd 2839 |
. . . 4
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) ∧ (𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎))))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |
93 | 92 | ex 412 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) ∧ (𝑎 ∈ Fin ∧ 𝑏 ∈ (mzPoly‘𝑎))) → ((𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁))) |
94 | 93 | rexlimdvva 3222 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → (∃𝑎 ∈ Fin ∃𝑏 ∈ (mzPoly‘𝑎)(𝑎 ⊆ 𝑆 ∧ 𝑃 = (𝑒 ∈ (ℤ ↑m 𝑆) ↦ (𝑏‘(𝑒 ↾ 𝑎)))) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁))) |
95 | 2, 94 | mpd 15 |
1
⊢ ((𝑁 ∈ ℕ0
∧ (𝑆 ∈ V ∧
(1...𝑁) ⊆ 𝑆) ∧ 𝑃 ∈ (mzPoly‘𝑆)) → {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m 𝑆)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑃‘𝑢) = 0)} ∈ (Dioph‘𝑁)) |