Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem77 Structured version   Visualization version   GIF version

Theorem fourierdlem77 44414
Description: If 𝐻 is bounded, then 𝑈 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem77.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem77.x (𝜑𝑋 ∈ ℝ)
fourierdlem77.y (𝜑𝑌 ∈ ℝ)
fourierdlem77.w (𝜑𝑊 ∈ ℝ)
fourierdlem77.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem77.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem77.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem77.bd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
Assertion
Ref Expression
fourierdlem77 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐾,𝑏,𝑠   𝑈,𝑎,𝑏   𝜑,𝑎,𝑠
Allowed substitution hints:   𝜑(𝑏)   𝑈(𝑠)   𝐹(𝑠,𝑎,𝑏)   𝐻(𝑠,𝑎,𝑏)   𝐾(𝑎)   𝑊(𝑠,𝑎,𝑏)   𝑋(𝑠,𝑎,𝑏)   𝑌(𝑠,𝑎,𝑏)

Proof of Theorem fourierdlem77
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem77.bd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
2 pire 25815 . . . . . . . . . 10 π ∈ ℝ
32renegcli 11462 . . . . . . . . 9 -π ∈ ℝ
43a1i 11 . . . . . . . 8 (⊤ → -π ∈ ℝ)
52a1i 11 . . . . . . . 8 (⊤ → π ∈ ℝ)
6 pirp 25818 . . . . . . . . . . 11 π ∈ ℝ+
7 neglt 43508 . . . . . . . . . . 11 (π ∈ ℝ+ → -π < π)
86, 7ax-mp 5 . . . . . . . . . 10 -π < π
93, 2, 8ltleii 11278 . . . . . . . . 9 -π ≤ π
109a1i 11 . . . . . . . 8 (⊤ → -π ≤ π)
11 fourierdlem77.k . . . . . . . . . 10 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
1211fourierdlem62 44399 . . . . . . . . 9 𝐾 ∈ ((-π[,]π)–cn→ℝ)
1312a1i 11 . . . . . . . 8 (⊤ → 𝐾 ∈ ((-π[,]π)–cn→ℝ))
144, 5, 10, 13evthiccabs 43724 . . . . . . 7 (⊤ → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦))))
1514mptru 1548 . . . . . 6 (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦)))
1615simpli 484 . . . . 5 𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
1716a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
18 simpl 483 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
1911fourierdlem43 44381 . . . . . . . . . . . . . 14 𝐾:(-π[,]π)⟶ℝ
2019ffvelcdmi 7034 . . . . . . . . . . . . 13 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℝ)
2120adantl 482 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℝ)
2218, 21remulcld 11185 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℝ)
2322recnd 11183 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℂ)
2423abscld 15321 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
2523absge0d 15329 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑎 · (𝐾𝑐))))
2624, 25ge0p1rpd 12987 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
27263ad2antl2 1186 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
28273adant3 1132 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
29 nfv 1917 . . . . . . . . 9 𝑠𝜑
30 nfv 1917 . . . . . . . . 9 𝑠 𝑎 ∈ ℝ
31 nfra1 3267 . . . . . . . . 9 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎
3229, 30, 31nf3an 1904 . . . . . . . 8 𝑠(𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
33 nfv 1917 . . . . . . . 8 𝑠 𝑐 ∈ (-π[,]π)
34 nfra1 3267 . . . . . . . 8 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
3532, 33, 34nf3an 1904 . . . . . . 7 𝑠((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
36 simpl11 1248 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
37 simpl12 1249 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
3836, 37jca 512 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (𝜑𝑎 ∈ ℝ))
39 simpl13 1250 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
40 rspa 3231 . . . . . . . . . . 11 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
4139, 40sylancom 588 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
42 simpl2 1192 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
4338, 41, 42jca31 515 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)))
44 rspa 3231 . . . . . . . . . 10 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
45443ad2antl3 1187 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
46 simpr 485 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
47 simp-5l 783 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
48 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
49 fourierdlem77.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℝ⟶ℝ)
50 fourierdlem77.x . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
51 fourierdlem77.y . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
52 fourierdlem77.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ℝ)
53 fourierdlem77.h . . . . . . . . . . . . . . . . . 18 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
5449, 50, 51, 52, 53fourierdlem9 44347 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:(-π[,]π)⟶ℝ)
5554ffvelcdmda 7035 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℝ)
5619ffvelcdmi 7034 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℝ)
5756adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℝ)
5855, 57remulcld 11185 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
59 fourierdlem77.u . . . . . . . . . . . . . . . 16 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
6059fvmpt2 6959 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6148, 58, 60syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6261, 58eqeltrd 2838 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
6362recnd 11183 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
6463abscld 15321 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6547, 64sylancom 588 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
66 simp-5r 784 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
67 simpllr 774 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
6866, 67, 24syl2anc 584 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
69 peano2re 11328 . . . . . . . . . . 11 ((abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7161fveq2d 6846 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7247, 71sylancom 588 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7355recnd 11183 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℂ)
7473abscld 15321 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
7547, 74sylancom 588 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
76 recn 11141 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
7776abscld 15321 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → (abs‘𝑎) ∈ ℝ)
7866, 77syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
7956recnd 11183 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℂ)
8079abscld 15321 . . . . . . . . . . . . . . 15 (𝑠 ∈ (-π[,]π) → (abs‘(𝐾𝑠)) ∈ ℝ)
8180adantl 482 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ∈ ℝ)
8220recnd 11183 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℂ)
8382abscld 15321 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → (abs‘(𝐾𝑐)) ∈ ℝ)
8467, 83syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑐)) ∈ ℝ)
8573absge0d 15329 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8647, 85sylancom 588 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8782absge0d 15329 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → 0 ≤ (abs‘(𝐾𝑐)))
8867, 87syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐾𝑐)))
8974ad4ant14 750 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
90 simpllr 774 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
9177ad3antlr 729 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
92 simplr 767 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
9390leabsd 15299 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ≤ (abs‘𝑎))
9489, 90, 91, 92, 93letrd 11312 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
9594ad4ant14 750 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
96 simplr 767 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
9775, 78, 81, 84, 86, 88, 95, 96lemul12bd 12098 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))) ≤ ((abs‘𝑎) · (abs‘(𝐾𝑐))))
9857recnd 11183 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℂ)
9973, 98absmuld 15339 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10047, 99sylancom 588 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10176adantr 481 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℂ)
10221recnd 11183 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℂ)
103101, 102absmuld 15339 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10466, 67, 103syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10597, 100, 1043brtr4d 5137 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10672, 105eqbrtrd 5127 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10768ltp1d 12085 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10865, 68, 70, 106, 107lelttrd 11313 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10965, 70, 108ltled 11303 . . . . . . . . 9 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
11043, 45, 46, 109syl21anc 836 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
111110ex 413 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → (𝑠 ∈ (-π[,]π) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
11235, 111ralrimi 3240 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
113 breq2 5109 . . . . . . . 8 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → ((abs‘(𝑈𝑠)) ≤ 𝑏 ↔ (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
114113ralbidv 3174 . . . . . . 7 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
115114rspcev 3581 . . . . . 6 ((((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
11628, 112, 115syl2anc 584 . . . . 5 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
117116rexlimdv3a 3156 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
11817, 117mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
119118rexlimdv3a 3156 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
1201, 119mpd 15 1 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wral 3064  wrex 3073  ifcif 4486   class class class wbr 5105  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  2c2 12208  +crp 12915  [,]cicc 13267  abscabs 15119  sincsin 15946  πcpi 15949  cnccncf 24239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  fourierdlem87  44424
  Copyright terms: Public domain W3C validator