| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem77.bd |
. 2
⊢ (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) |
| 2 | | pire 26423 |
. . . . . . . . . 10
⊢ π
∈ ℝ |
| 3 | 2 | renegcli 11549 |
. . . . . . . . 9
⊢ -π
∈ ℝ |
| 4 | 3 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ -π ∈ ℝ) |
| 5 | 2 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ π ∈ ℝ) |
| 6 | | pirp 26427 |
. . . . . . . . . . 11
⊢ π
∈ ℝ+ |
| 7 | | neglt 45280 |
. . . . . . . . . . 11
⊢ (π
∈ ℝ+ → -π < π) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . . 10
⊢ -π
< π |
| 9 | 3, 2, 8 | ltleii 11363 |
. . . . . . . . 9
⊢ -π
≤ π |
| 10 | 9 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ -π ≤ π) |
| 11 | | fourierdlem77.k |
. . . . . . . . . 10
⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
| 12 | 11 | fourierdlem62 46164 |
. . . . . . . . 9
⊢ 𝐾 ∈
((-π[,]π)–cn→ℝ) |
| 13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (⊤
→ 𝐾 ∈
((-π[,]π)–cn→ℝ)) |
| 14 | 4, 5, 10, 13 | evthiccabs 45492 |
. . . . . . 7
⊢ (⊤
→ (∃𝑐 ∈
(-π[,]π)∀𝑠
∈ (-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈
(-π[,]π)(abs‘(𝐾‘𝑥)) ≤ (abs‘(𝐾‘𝑦)))) |
| 15 | 14 | mptru 1547 |
. . . . . 6
⊢
(∃𝑐 ∈
(-π[,]π)∀𝑠
∈ (-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈
(-π[,]π)(abs‘(𝐾‘𝑥)) ≤ (abs‘(𝐾‘𝑦))) |
| 16 | 15 | simpli 483 |
. . . . 5
⊢
∃𝑐 ∈
(-π[,]π)∀𝑠
∈ (-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐)) |
| 17 | 16 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) → ∃𝑐 ∈ (-π[,]π)∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) |
| 18 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
𝑎 ∈
ℝ) |
| 19 | 11 | fourierdlem43 46146 |
. . . . . . . . . . . . . 14
⊢ 𝐾:(-π[,]π)⟶ℝ |
| 20 | 19 | ffvelcdmi 7078 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ (-π[,]π) →
(𝐾‘𝑐) ∈ ℝ) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
(𝐾‘𝑐) ∈ ℝ) |
| 22 | 18, 21 | remulcld 11270 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
(𝑎 · (𝐾‘𝑐)) ∈ ℝ) |
| 23 | 22 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
(𝑎 · (𝐾‘𝑐)) ∈ ℂ) |
| 24 | 23 | abscld 15460 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
(abs‘(𝑎 ·
(𝐾‘𝑐))) ∈ ℝ) |
| 25 | 23 | absge0d 15468 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 0
≤ (abs‘(𝑎 ·
(𝐾‘𝑐)))) |
| 26 | 24, 25 | ge0p1rpd 13086 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
((abs‘(𝑎 ·
(𝐾‘𝑐))) + 1) ∈
ℝ+) |
| 27 | 26 | 3ad2antl2 1187 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) →
((abs‘(𝑎 ·
(𝐾‘𝑐))) + 1) ∈
ℝ+) |
| 28 | 27 | 3adant3 1132 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) → ((abs‘(𝑎 · (𝐾‘𝑐))) + 1) ∈
ℝ+) |
| 29 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑠𝜑 |
| 30 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑠 𝑎 ∈ ℝ |
| 31 | | nfra1 3270 |
. . . . . . . . 9
⊢
Ⅎ𝑠∀𝑠 ∈ (-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎 |
| 32 | 29, 30, 31 | nf3an 1901 |
. . . . . . . 8
⊢
Ⅎ𝑠(𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) |
| 33 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑠 𝑐 ∈
(-π[,]π) |
| 34 | | nfra1 3270 |
. . . . . . . 8
⊢
Ⅎ𝑠∀𝑠 ∈ (-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐)) |
| 35 | 32, 33, 34 | nf3an 1901 |
. . . . . . 7
⊢
Ⅎ𝑠((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) |
| 36 | | simpl11 1249 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑) |
| 37 | | simpl12 1250 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈
ℝ) |
| 38 | 36, 37 | jca 511 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (𝜑 ∧ 𝑎 ∈ ℝ)) |
| 39 | | simpl13 1251 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) |
| 40 | | rspa 3235 |
. . . . . . . . . . 11
⊢
((∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎 ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐻‘𝑠)) ≤ 𝑎) |
| 41 | 39, 40 | sylancom 588 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐻‘𝑠)) ≤ 𝑎) |
| 42 | | simpl2 1193 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈
(-π[,]π)) |
| 43 | 38, 41, 42 | jca31 514 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π))) |
| 44 | | rspa 3235 |
. . . . . . . . . 10
⊢
((∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐)) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) |
| 45 | 44 | 3ad2antl3 1188 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) |
| 46 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈
(-π[,]π)) |
| 47 | | simp-5l 784 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑) |
| 48 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈
(-π[,]π)) |
| 49 | | fourierdlem77.f |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 50 | | fourierdlem77.x |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 51 | | fourierdlem77.y |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑌 ∈ ℝ) |
| 52 | | fourierdlem77.w |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑊 ∈ ℝ) |
| 53 | | fourierdlem77.h |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠))) |
| 54 | 49, 50, 51, 52, 53 | fourierdlem9 46112 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐻:(-π[,]π)⟶ℝ) |
| 55 | 54 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝐻‘𝑠) ∈ ℝ) |
| 56 | 19 | ffvelcdmi 7078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ (-π[,]π) →
(𝐾‘𝑠) ∈ ℝ) |
| 57 | 56 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝐾‘𝑠) ∈ ℝ) |
| 58 | 55, 57 | remulcld 11270 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → ((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℝ) |
| 59 | | fourierdlem77.u |
. . . . . . . . . . . . . . . 16
⊢ 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻‘𝑠) · (𝐾‘𝑠))) |
| 60 | 59 | fvmpt2 7002 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ (-π[,]π) ∧
((𝐻‘𝑠) · (𝐾‘𝑠)) ∈ ℝ) → (𝑈‘𝑠) = ((𝐻‘𝑠) · (𝐾‘𝑠))) |
| 61 | 48, 58, 60 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝑈‘𝑠) = ((𝐻‘𝑠) · (𝐾‘𝑠))) |
| 62 | 61, 58 | eqeltrd 2835 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝑈‘𝑠) ∈ ℝ) |
| 63 | 62 | recnd 11268 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝑈‘𝑠) ∈ ℂ) |
| 64 | 63 | abscld 15460 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑈‘𝑠)) ∈
ℝ) |
| 65 | 47, 64 | sylancom 588 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑈‘𝑠)) ∈
ℝ) |
| 66 | | simp-5r 785 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈
ℝ) |
| 67 | | simpllr 775 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈
(-π[,]π)) |
| 68 | 66, 67, 24 | syl2anc 584 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑎 ·
(𝐾‘𝑐))) ∈ ℝ) |
| 69 | | peano2re 11413 |
. . . . . . . . . . 11
⊢
((abs‘(𝑎
· (𝐾‘𝑐))) ∈ ℝ →
((abs‘(𝑎 ·
(𝐾‘𝑐))) + 1) ∈ ℝ) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
((abs‘(𝑎 ·
(𝐾‘𝑐))) + 1) ∈ ℝ) |
| 71 | 61 | fveq2d 6885 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑈‘𝑠)) = (abs‘((𝐻‘𝑠) · (𝐾‘𝑠)))) |
| 72 | 47, 71 | sylancom 588 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑈‘𝑠)) = (abs‘((𝐻‘𝑠) · (𝐾‘𝑠)))) |
| 73 | 55 | recnd 11268 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝐻‘𝑠) ∈ ℂ) |
| 74 | 73 | abscld 15460 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐻‘𝑠)) ∈
ℝ) |
| 75 | 47, 74 | sylancom 588 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐻‘𝑠)) ∈
ℝ) |
| 76 | | recn 11224 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ ℝ → 𝑎 ∈
ℂ) |
| 77 | 76 | abscld 15460 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ ℝ →
(abs‘𝑎) ∈
ℝ) |
| 78 | 66, 77 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘𝑎) ∈
ℝ) |
| 79 | 56 | recnd 11268 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ (-π[,]π) →
(𝐾‘𝑠) ∈ ℂ) |
| 80 | 79 | abscld 15460 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ (-π[,]π) →
(abs‘(𝐾‘𝑠)) ∈
ℝ) |
| 81 | 80 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐾‘𝑠)) ∈
ℝ) |
| 82 | 20 | recnd 11268 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ (-π[,]π) →
(𝐾‘𝑐) ∈ ℂ) |
| 83 | 82 | abscld 15460 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ (-π[,]π) →
(abs‘(𝐾‘𝑐)) ∈
ℝ) |
| 84 | 67, 83 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐾‘𝑐)) ∈
ℝ) |
| 85 | 73 | absge0d 15468 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤
(abs‘(𝐻‘𝑠))) |
| 86 | 47, 85 | sylancom 588 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤
(abs‘(𝐻‘𝑠))) |
| 87 | 82 | absge0d 15468 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ (-π[,]π) → 0
≤ (abs‘(𝐾‘𝑐))) |
| 88 | 67, 87 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤
(abs‘(𝐾‘𝑐))) |
| 89 | 74 | ad4ant14 752 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐻‘𝑠)) ∈
ℝ) |
| 90 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈
ℝ) |
| 91 | 77 | ad3antlr 731 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘𝑎) ∈
ℝ) |
| 92 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐻‘𝑠)) ≤ 𝑎) |
| 93 | 90 | leabsd 15438 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ≤ (abs‘𝑎)) |
| 94 | 89, 90, 91, 92, 93 | letrd 11397 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ) ∧ (abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐻‘𝑠)) ≤ (abs‘𝑎)) |
| 95 | 94 | ad4ant14 752 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐻‘𝑠)) ≤ (abs‘𝑎)) |
| 96 | | simplr 768 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) |
| 97 | 75, 78, 81, 84, 86, 88, 95, 96 | lemul12bd 12190 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
((abs‘(𝐻‘𝑠)) · (abs‘(𝐾‘𝑠))) ≤ ((abs‘𝑎) · (abs‘(𝐾‘𝑐)))) |
| 98 | 57 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝐾‘𝑠) ∈ ℂ) |
| 99 | 73, 98 | absmuld 15478 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘((𝐻‘𝑠) · (𝐾‘𝑠))) = ((abs‘(𝐻‘𝑠)) · (abs‘(𝐾‘𝑠)))) |
| 100 | 47, 99 | sylancom 588 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘((𝐻‘𝑠) · (𝐾‘𝑠))) = ((abs‘(𝐻‘𝑠)) · (abs‘(𝐾‘𝑠)))) |
| 101 | 76 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
𝑎 ∈
ℂ) |
| 102 | 21 | recnd 11268 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
(𝐾‘𝑐) ∈ ℂ) |
| 103 | 101, 102 | absmuld 15478 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) →
(abs‘(𝑎 ·
(𝐾‘𝑐))) = ((abs‘𝑎) · (abs‘(𝐾‘𝑐)))) |
| 104 | 66, 67, 103 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑎 ·
(𝐾‘𝑐))) = ((abs‘𝑎) · (abs‘(𝐾‘𝑐)))) |
| 105 | 97, 100, 104 | 3brtr4d 5156 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘((𝐻‘𝑠) · (𝐾‘𝑠))) ≤ (abs‘(𝑎 · (𝐾‘𝑐)))) |
| 106 | 72, 105 | eqbrtrd 5146 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑈‘𝑠)) ≤ (abs‘(𝑎 · (𝐾‘𝑐)))) |
| 107 | 68 | ltp1d 12177 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑎 ·
(𝐾‘𝑐))) < ((abs‘(𝑎 · (𝐾‘𝑐))) + 1)) |
| 108 | 65, 68, 70, 106, 107 | lelttrd 11398 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑈‘𝑠)) < ((abs‘(𝑎 · (𝐾‘𝑐))) + 1)) |
| 109 | 65, 70, 108 | ltled 11388 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑎 ∈ ℝ) ∧
(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧
(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑈‘𝑠)) ≤ ((abs‘(𝑎 · (𝐾‘𝑐))) + 1)) |
| 110 | 43, 45, 46, 109 | syl21anc 837 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) ∧ 𝑠 ∈ (-π[,]π)) →
(abs‘(𝑈‘𝑠)) ≤ ((abs‘(𝑎 · (𝐾‘𝑐))) + 1)) |
| 111 | 110 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) → (𝑠 ∈ (-π[,]π) →
(abs‘(𝑈‘𝑠)) ≤ ((abs‘(𝑎 · (𝐾‘𝑐))) + 1))) |
| 112 | 35, 111 | ralrimi 3244 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈‘𝑠)) ≤ ((abs‘(𝑎 · (𝐾‘𝑐))) + 1)) |
| 113 | | breq2 5128 |
. . . . . . . 8
⊢ (𝑏 = ((abs‘(𝑎 · (𝐾‘𝑐))) + 1) → ((abs‘(𝑈‘𝑠)) ≤ 𝑏 ↔ (abs‘(𝑈‘𝑠)) ≤ ((abs‘(𝑎 · (𝐾‘𝑐))) + 1))) |
| 114 | 113 | ralbidv 3164 |
. . . . . . 7
⊢ (𝑏 = ((abs‘(𝑎 · (𝐾‘𝑐))) + 1) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈‘𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈‘𝑠)) ≤ ((abs‘(𝑎 · (𝐾‘𝑐))) + 1))) |
| 115 | 114 | rspcev 3606 |
. . . . . 6
⊢
((((abs‘(𝑎
· (𝐾‘𝑐))) + 1) ∈
ℝ+ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈‘𝑠)) ≤ ((abs‘(𝑎 · (𝐾‘𝑐))) + 1)) → ∃𝑏 ∈ ℝ+ ∀𝑠 ∈
(-π[,]π)(abs‘(𝑈‘𝑠)) ≤ 𝑏) |
| 116 | 28, 112, 115 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐))) → ∃𝑏 ∈ ℝ+ ∀𝑠 ∈
(-π[,]π)(abs‘(𝑈‘𝑠)) ≤ 𝑏) |
| 117 | 116 | rexlimdv3a 3146 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈
(-π[,]π)(abs‘(𝐾‘𝑠)) ≤ (abs‘(𝐾‘𝑐)) → ∃𝑏 ∈ ℝ+ ∀𝑠 ∈
(-π[,]π)(abs‘(𝑈‘𝑠)) ≤ 𝑏)) |
| 118 | 17, 117 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ ∧ ∀𝑠 ∈
(-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎) → ∃𝑏 ∈ ℝ+ ∀𝑠 ∈
(-π[,]π)(abs‘(𝑈‘𝑠)) ≤ 𝑏) |
| 119 | 118 | rexlimdv3a 3146 |
. 2
⊢ (𝜑 → (∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻‘𝑠)) ≤ 𝑎 → ∃𝑏 ∈ ℝ+ ∀𝑠 ∈
(-π[,]π)(abs‘(𝑈‘𝑠)) ≤ 𝑏)) |
| 120 | 1, 119 | mpd 15 |
1
⊢ (𝜑 → ∃𝑏 ∈ ℝ+ ∀𝑠 ∈
(-π[,]π)(abs‘(𝑈‘𝑠)) ≤ 𝑏) |