Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem77 Structured version   Visualization version   GIF version

Theorem fourierdlem77 40876
Description: If 𝐻 is bounded, then 𝑈 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem77.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem77.x (𝜑𝑋 ∈ ℝ)
fourierdlem77.y (𝜑𝑌 ∈ ℝ)
fourierdlem77.w (𝜑𝑊 ∈ ℝ)
fourierdlem77.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem77.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem77.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem77.bd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
Assertion
Ref Expression
fourierdlem77 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐾,𝑏,𝑠   𝑈,𝑎,𝑏   𝜑,𝑎,𝑠
Allowed substitution hints:   𝜑(𝑏)   𝑈(𝑠)   𝐹(𝑠,𝑎,𝑏)   𝐻(𝑠,𝑎,𝑏)   𝐾(𝑎)   𝑊(𝑠,𝑎,𝑏)   𝑋(𝑠,𝑎,𝑏)   𝑌(𝑠,𝑎,𝑏)

Proof of Theorem fourierdlem77
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem77.bd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
2 pire 24421 . . . . . . . . . 10 π ∈ ℝ
32renegcli 10624 . . . . . . . . 9 -π ∈ ℝ
43a1i 11 . . . . . . . 8 (⊤ → -π ∈ ℝ)
52a1i 11 . . . . . . . 8 (⊤ → π ∈ ℝ)
6 pirp 24424 . . . . . . . . . . 11 π ∈ ℝ+
7 neglt 39975 . . . . . . . . . . 11 (π ∈ ℝ+ → -π < π)
86, 7ax-mp 5 . . . . . . . . . 10 -π < π
93, 2, 8ltleii 10442 . . . . . . . . 9 -π ≤ π
109a1i 11 . . . . . . . 8 (⊤ → -π ≤ π)
11 fourierdlem77.k . . . . . . . . . 10 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
1211fourierdlem62 40861 . . . . . . . . 9 𝐾 ∈ ((-π[,]π)–cn→ℝ)
1312a1i 11 . . . . . . . 8 (⊤ → 𝐾 ∈ ((-π[,]π)–cn→ℝ))
144, 5, 10, 13evthiccabs 40199 . . . . . . 7 (⊤ → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦))))
1514mptru 1645 . . . . . 6 (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦)))
1615simpli 472 . . . . 5 𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
1716a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
18 simpl 470 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
1911fourierdlem43 40843 . . . . . . . . . . . . . 14 𝐾:(-π[,]π)⟶ℝ
2019ffvelrni 6577 . . . . . . . . . . . . 13 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℝ)
2120adantl 469 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℝ)
2218, 21remulcld 10352 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℝ)
2322recnd 10350 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℂ)
2423abscld 14394 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
2523absge0d 14402 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑎 · (𝐾𝑐))))
2624, 25ge0p1rpd 12112 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
27263ad2antl2 1230 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
28273adant3 1155 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
29 nfv 2008 . . . . . . . . 9 𝑠𝜑
30 nfv 2008 . . . . . . . . 9 𝑠 𝑎 ∈ ℝ
31 nfra1 3128 . . . . . . . . 9 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎
3229, 30, 31nf3an 1996 . . . . . . . 8 𝑠(𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
33 nfv 2008 . . . . . . . 8 𝑠 𝑐 ∈ (-π[,]π)
34 nfra1 3128 . . . . . . . 8 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
3532, 33, 34nf3an 1996 . . . . . . 7 𝑠((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
36 simpl11 1322 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
37 simpl12 1324 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
3836, 37jca 503 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (𝜑𝑎 ∈ ℝ))
39 simpl13 1326 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
40 rspa 3117 . . . . . . . . . . 11 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
4139, 40sylancom 578 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
42 simpl2 1237 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
4338, 41, 42jca31 506 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)))
44 rspa 3117 . . . . . . . . . 10 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
45443ad2antl3 1231 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
46 simpr 473 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
47 simp-5l 796 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
48 simpr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
49 fourierdlem77.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℝ⟶ℝ)
50 fourierdlem77.x . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
51 fourierdlem77.y . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
52 fourierdlem77.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ℝ)
53 fourierdlem77.h . . . . . . . . . . . . . . . . . 18 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
5449, 50, 51, 52, 53fourierdlem9 40809 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:(-π[,]π)⟶ℝ)
5554ffvelrnda 6578 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℝ)
5619ffvelrni 6577 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℝ)
5756adantl 469 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℝ)
5855, 57remulcld 10352 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
59 fourierdlem77.u . . . . . . . . . . . . . . . 16 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
6059fvmpt2 6509 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6148, 58, 60syl2anc 575 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6261, 58eqeltrd 2884 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
6362recnd 10350 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
6463abscld 14394 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6547, 64sylancom 578 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
66 simp-5r 798 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
67 simpllr 784 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
6866, 67, 24syl2anc 575 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
69 peano2re 10491 . . . . . . . . . . 11 ((abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7161fveq2d 6409 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7247, 71sylancom 578 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7355recnd 10350 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℂ)
7473abscld 14394 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
7547, 74sylancom 578 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
76 recn 10308 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
7776abscld 14394 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → (abs‘𝑎) ∈ ℝ)
7866, 77syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
7956recnd 10350 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℂ)
8079abscld 14394 . . . . . . . . . . . . . . 15 (𝑠 ∈ (-π[,]π) → (abs‘(𝐾𝑠)) ∈ ℝ)
8180adantl 469 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ∈ ℝ)
8220recnd 10350 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℂ)
8382abscld 14394 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → (abs‘(𝐾𝑐)) ∈ ℝ)
8467, 83syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑐)) ∈ ℝ)
8573absge0d 14402 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8647, 85sylancom 578 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8782absge0d 14402 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → 0 ≤ (abs‘(𝐾𝑐)))
8867, 87syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐾𝑐)))
8974ad4ant14 750 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
90 simpllr 784 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
9177ad3antlr 713 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
92 simplr 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
9390leabsd 14372 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ≤ (abs‘𝑎))
9489, 90, 91, 92, 93letrd 10476 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
9594ad4ant14 750 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
96 simplr 776 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
9775, 78, 81, 84, 86, 88, 95, 96lemul12bd 11249 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))) ≤ ((abs‘𝑎) · (abs‘(𝐾𝑐))))
9857recnd 10350 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℂ)
9973, 98absmuld 14412 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10047, 99sylancom 578 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10176adantr 468 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℂ)
10221recnd 10350 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℂ)
103101, 102absmuld 14412 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10466, 67, 103syl2anc 575 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10597, 100, 1043brtr4d 4872 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10672, 105eqbrtrd 4862 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10768ltp1d 11236 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10865, 68, 70, 106, 107lelttrd 10477 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10965, 70, 108ltled 10467 . . . . . . . . 9 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
11043, 45, 46, 109syl21anc 857 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
111110ex 399 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → (𝑠 ∈ (-π[,]π) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
11235, 111ralrimi 3144 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
113 breq2 4844 . . . . . . . 8 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → ((abs‘(𝑈𝑠)) ≤ 𝑏 ↔ (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
114113ralbidv 3173 . . . . . . 7 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
115114rspcev 3501 . . . . . 6 ((((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
11628, 112, 115syl2anc 575 . . . . 5 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
117116rexlimdv3a 3220 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
11817, 117mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
119118rexlimdv3a 3220 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
1201, 119mpd 15 1 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wtru 1638  wcel 2158  wral 3095  wrex 3096  ifcif 4276   class class class wbr 4840  cmpt 4919  wf 6094  cfv 6098  (class class class)co 6871  cc 10216  cr 10217  0cc0 10218  1c1 10219   + caddc 10221   · cmul 10223   < clt 10356  cle 10357  cmin 10548  -cneg 10549   / cdiv 10966  2c2 11352  +crp 12042  [,]cicc 12392  abscabs 14193  sincsin 15010  πcpi 15013  cnccncf 22888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1880  ax-4 1897  ax-5 2004  ax-6 2070  ax-7 2106  ax-8 2160  ax-9 2167  ax-10 2187  ax-11 2203  ax-12 2216  ax-13 2422  ax-ext 2784  ax-rep 4960  ax-sep 4971  ax-nul 4980  ax-pow 5032  ax-pr 5093  ax-un 7176  ax-inf2 8782  ax-cnex 10274  ax-resscn 10275  ax-1cn 10276  ax-icn 10277  ax-addcl 10278  ax-addrcl 10279  ax-mulcl 10280  ax-mulrcl 10281  ax-mulcom 10282  ax-addass 10283  ax-mulass 10284  ax-distr 10285  ax-i2m1 10286  ax-1ne0 10287  ax-1rid 10288  ax-rnegex 10289  ax-rrecex 10290  ax-cnre 10291  ax-pre-lttri 10292  ax-pre-lttrn 10293  ax-pre-ltadd 10294  ax-pre-mulgt0 10295  ax-pre-sup 10296  ax-addf 10297  ax-mulf 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1865  df-sb 2063  df-eu 2636  df-mo 2637  df-clab 2792  df-cleq 2798  df-clel 2801  df-nfc 2936  df-ne 2978  df-nel 3081  df-ral 3100  df-rex 3101  df-reu 3102  df-rmo 3103  df-rab 3104  df-v 3392  df-sbc 3631  df-csb 3726  df-dif 3769  df-un 3771  df-in 3773  df-ss 3780  df-pss 3782  df-nul 4114  df-if 4277  df-pw 4350  df-sn 4368  df-pr 4370  df-tp 4372  df-op 4374  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4841  df-opab 4903  df-mpt 4920  df-tr 4943  df-id 5216  df-eprel 5221  df-po 5229  df-so 5230  df-fr 5267  df-se 5268  df-we 5269  df-xp 5314  df-rel 5315  df-cnv 5316  df-co 5317  df-dm 5318  df-rn 5319  df-res 5320  df-ima 5321  df-pred 5890  df-ord 5936  df-on 5937  df-lim 5938  df-suc 5939  df-iota 6061  df-fun 6100  df-fn 6101  df-f 6102  df-f1 6103  df-fo 6104  df-f1o 6105  df-fv 6106  df-isom 6107  df-riota 6832  df-ov 6874  df-oprab 6875  df-mpt2 6876  df-of 7124  df-om 7293  df-1st 7395  df-2nd 7396  df-supp 7527  df-wrecs 7639  df-recs 7701  df-rdg 7739  df-1o 7793  df-2o 7794  df-oadd 7797  df-er 7976  df-map 8091  df-pm 8092  df-ixp 8143  df-en 8190  df-dom 8191  df-sdom 8192  df-fin 8193  df-fsupp 8512  df-fi 8553  df-sup 8584  df-inf 8585  df-oi 8651  df-card 9045  df-cda 9272  df-pnf 10358  df-mnf 10359  df-xr 10360  df-ltxr 10361  df-le 10362  df-sub 10550  df-neg 10551  df-div 10967  df-nn 11303  df-2 11360  df-3 11361  df-4 11362  df-5 11363  df-6 11364  df-7 11365  df-8 11366  df-9 11367  df-n0 11556  df-z 11640  df-dec 11756  df-uz 11901  df-q 12004  df-rp 12043  df-xneg 12158  df-xadd 12159  df-xmul 12160  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12546  df-fzo 12686  df-fl 12813  df-mod 12889  df-seq 13021  df-exp 13080  df-fac 13277  df-bc 13306  df-hash 13334  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15014  df-sin 15016  df-cos 15017  df-pi 15019  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16284  df-topn 16285  df-0g 16303  df-gsum 16304  df-topgen 16305  df-pt 16306  df-prds 16309  df-xrs 16363  df-qtop 16368  df-imas 16369  df-xps 16371  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17947  df-cmn 18392  df-psmet 19942  df-xmet 19943  df-met 19944  df-bl 19945  df-mopn 19946  df-fbas 19947  df-fg 19948  df-cnfld 19951  df-top 20908  df-topon 20925  df-topsp 20947  df-bases 20960  df-cld 21033  df-ntr 21034  df-cls 21035  df-nei 21112  df-lp 21150  df-perf 21151  df-cn 21241  df-cnp 21242  df-t1 21328  df-haus 21329  df-cmp 21400  df-tx 21575  df-hmeo 21768  df-fil 21859  df-fm 21951  df-flim 21952  df-flf 21953  df-xms 22334  df-ms 22335  df-tms 22336  df-cncf 22890  df-limc 23840  df-dv 23841
This theorem is referenced by:  fourierdlem87  40886
  Copyright terms: Public domain W3C validator