Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem77 Structured version   Visualization version   GIF version

Theorem fourierdlem77 43614
Description: If 𝐻 is bounded, then 𝑈 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem77.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem77.x (𝜑𝑋 ∈ ℝ)
fourierdlem77.y (𝜑𝑌 ∈ ℝ)
fourierdlem77.w (𝜑𝑊 ∈ ℝ)
fourierdlem77.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem77.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem77.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem77.bd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
Assertion
Ref Expression
fourierdlem77 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐾,𝑏,𝑠   𝑈,𝑎,𝑏   𝜑,𝑎,𝑠
Allowed substitution hints:   𝜑(𝑏)   𝑈(𝑠)   𝐹(𝑠,𝑎,𝑏)   𝐻(𝑠,𝑎,𝑏)   𝐾(𝑎)   𝑊(𝑠,𝑎,𝑏)   𝑋(𝑠,𝑎,𝑏)   𝑌(𝑠,𝑎,𝑏)

Proof of Theorem fourierdlem77
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem77.bd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
2 pire 25520 . . . . . . . . . 10 π ∈ ℝ
32renegcli 11212 . . . . . . . . 9 -π ∈ ℝ
43a1i 11 . . . . . . . 8 (⊤ → -π ∈ ℝ)
52a1i 11 . . . . . . . 8 (⊤ → π ∈ ℝ)
6 pirp 25523 . . . . . . . . . . 11 π ∈ ℝ+
7 neglt 42712 . . . . . . . . . . 11 (π ∈ ℝ+ → -π < π)
86, 7ax-mp 5 . . . . . . . . . 10 -π < π
93, 2, 8ltleii 11028 . . . . . . . . 9 -π ≤ π
109a1i 11 . . . . . . . 8 (⊤ → -π ≤ π)
11 fourierdlem77.k . . . . . . . . . 10 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
1211fourierdlem62 43599 . . . . . . . . 9 𝐾 ∈ ((-π[,]π)–cn→ℝ)
1312a1i 11 . . . . . . . 8 (⊤ → 𝐾 ∈ ((-π[,]π)–cn→ℝ))
144, 5, 10, 13evthiccabs 42924 . . . . . . 7 (⊤ → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦))))
1514mptru 1546 . . . . . 6 (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦)))
1615simpli 483 . . . . 5 𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
1716a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
18 simpl 482 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
1911fourierdlem43 43581 . . . . . . . . . . . . . 14 𝐾:(-π[,]π)⟶ℝ
2019ffvelrni 6942 . . . . . . . . . . . . 13 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℝ)
2120adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℝ)
2218, 21remulcld 10936 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℝ)
2322recnd 10934 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℂ)
2423abscld 15076 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
2523absge0d 15084 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑎 · (𝐾𝑐))))
2624, 25ge0p1rpd 12731 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
27263ad2antl2 1184 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
28273adant3 1130 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
29 nfv 1918 . . . . . . . . 9 𝑠𝜑
30 nfv 1918 . . . . . . . . 9 𝑠 𝑎 ∈ ℝ
31 nfra1 3142 . . . . . . . . 9 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎
3229, 30, 31nf3an 1905 . . . . . . . 8 𝑠(𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
33 nfv 1918 . . . . . . . 8 𝑠 𝑐 ∈ (-π[,]π)
34 nfra1 3142 . . . . . . . 8 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
3532, 33, 34nf3an 1905 . . . . . . 7 𝑠((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
36 simpl11 1246 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
37 simpl12 1247 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
3836, 37jca 511 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (𝜑𝑎 ∈ ℝ))
39 simpl13 1248 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
40 rspa 3130 . . . . . . . . . . 11 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
4139, 40sylancom 587 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
42 simpl2 1190 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
4338, 41, 42jca31 514 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)))
44 rspa 3130 . . . . . . . . . 10 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
45443ad2antl3 1185 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
46 simpr 484 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
47 simp-5l 781 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
48 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
49 fourierdlem77.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℝ⟶ℝ)
50 fourierdlem77.x . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
51 fourierdlem77.y . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
52 fourierdlem77.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ℝ)
53 fourierdlem77.h . . . . . . . . . . . . . . . . . 18 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
5449, 50, 51, 52, 53fourierdlem9 43547 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:(-π[,]π)⟶ℝ)
5554ffvelrnda 6943 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℝ)
5619ffvelrni 6942 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℝ)
5756adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℝ)
5855, 57remulcld 10936 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
59 fourierdlem77.u . . . . . . . . . . . . . . . 16 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
6059fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6148, 58, 60syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6261, 58eqeltrd 2839 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
6362recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
6463abscld 15076 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6547, 64sylancom 587 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
66 simp-5r 782 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
67 simpllr 772 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
6866, 67, 24syl2anc 583 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
69 peano2re 11078 . . . . . . . . . . 11 ((abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7161fveq2d 6760 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7247, 71sylancom 587 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7355recnd 10934 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℂ)
7473abscld 15076 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
7547, 74sylancom 587 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
76 recn 10892 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
7776abscld 15076 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → (abs‘𝑎) ∈ ℝ)
7866, 77syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
7956recnd 10934 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℂ)
8079abscld 15076 . . . . . . . . . . . . . . 15 (𝑠 ∈ (-π[,]π) → (abs‘(𝐾𝑠)) ∈ ℝ)
8180adantl 481 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ∈ ℝ)
8220recnd 10934 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℂ)
8382abscld 15076 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → (abs‘(𝐾𝑐)) ∈ ℝ)
8467, 83syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑐)) ∈ ℝ)
8573absge0d 15084 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8647, 85sylancom 587 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8782absge0d 15084 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → 0 ≤ (abs‘(𝐾𝑐)))
8867, 87syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐾𝑐)))
8974ad4ant14 748 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
90 simpllr 772 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
9177ad3antlr 727 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
92 simplr 765 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
9390leabsd 15054 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ≤ (abs‘𝑎))
9489, 90, 91, 92, 93letrd 11062 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
9594ad4ant14 748 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
96 simplr 765 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
9775, 78, 81, 84, 86, 88, 95, 96lemul12bd 11848 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))) ≤ ((abs‘𝑎) · (abs‘(𝐾𝑐))))
9857recnd 10934 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℂ)
9973, 98absmuld 15094 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10047, 99sylancom 587 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10176adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℂ)
10221recnd 10934 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℂ)
103101, 102absmuld 15094 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10466, 67, 103syl2anc 583 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10597, 100, 1043brtr4d 5102 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10672, 105eqbrtrd 5092 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10768ltp1d 11835 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10865, 68, 70, 106, 107lelttrd 11063 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10965, 70, 108ltled 11053 . . . . . . . . 9 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
11043, 45, 46, 109syl21anc 834 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
111110ex 412 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → (𝑠 ∈ (-π[,]π) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
11235, 111ralrimi 3139 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
113 breq2 5074 . . . . . . . 8 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → ((abs‘(𝑈𝑠)) ≤ 𝑏 ↔ (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
114113ralbidv 3120 . . . . . . 7 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
115114rspcev 3552 . . . . . 6 ((((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
11628, 112, 115syl2anc 583 . . . . 5 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
117116rexlimdv3a 3214 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
11817, 117mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
119118rexlimdv3a 3214 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
1201, 119mpd 15 1 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wral 3063  wrex 3064  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  +crp 12659  [,]cicc 13011  abscabs 14873  sincsin 15701  πcpi 15704  cnccncf 23945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-t1 22373  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  fourierdlem87  43624
  Copyright terms: Public domain W3C validator