Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem77 Structured version   Visualization version   GIF version

Theorem fourierdlem77 46154
Description: If 𝐻 is bounded, then 𝑈 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem77.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem77.x (𝜑𝑋 ∈ ℝ)
fourierdlem77.y (𝜑𝑌 ∈ ℝ)
fourierdlem77.w (𝜑𝑊 ∈ ℝ)
fourierdlem77.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem77.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem77.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem77.bd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
Assertion
Ref Expression
fourierdlem77 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐾,𝑏,𝑠   𝑈,𝑎,𝑏   𝜑,𝑎,𝑠
Allowed substitution hints:   𝜑(𝑏)   𝑈(𝑠)   𝐹(𝑠,𝑎,𝑏)   𝐻(𝑠,𝑎,𝑏)   𝐾(𝑎)   𝑊(𝑠,𝑎,𝑏)   𝑋(𝑠,𝑎,𝑏)   𝑌(𝑠,𝑎,𝑏)

Proof of Theorem fourierdlem77
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem77.bd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
2 pire 26342 . . . . . . . . . 10 π ∈ ℝ
32renegcli 11459 . . . . . . . . 9 -π ∈ ℝ
43a1i 11 . . . . . . . 8 (⊤ → -π ∈ ℝ)
52a1i 11 . . . . . . . 8 (⊤ → π ∈ ℝ)
6 pirp 26346 . . . . . . . . . . 11 π ∈ ℝ+
7 neglt 12947 . . . . . . . . . . 11 (π ∈ ℝ+ → -π < π)
86, 7ax-mp 5 . . . . . . . . . 10 -π < π
93, 2, 8ltleii 11273 . . . . . . . . 9 -π ≤ π
109a1i 11 . . . . . . . 8 (⊤ → -π ≤ π)
11 fourierdlem77.k . . . . . . . . . 10 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
1211fourierdlem62 46139 . . . . . . . . 9 𝐾 ∈ ((-π[,]π)–cn→ℝ)
1312a1i 11 . . . . . . . 8 (⊤ → 𝐾 ∈ ((-π[,]π)–cn→ℝ))
144, 5, 10, 13evthiccabs 45467 . . . . . . 7 (⊤ → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦))))
1514mptru 1547 . . . . . 6 (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦)))
1615simpli 483 . . . . 5 𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
1716a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
18 simpl 482 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
1911fourierdlem43 46121 . . . . . . . . . . . . . 14 𝐾:(-π[,]π)⟶ℝ
2019ffvelcdmi 7037 . . . . . . . . . . . . 13 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℝ)
2120adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℝ)
2218, 21remulcld 11180 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℝ)
2322recnd 11178 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℂ)
2423abscld 15381 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
2523absge0d 15389 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑎 · (𝐾𝑐))))
2624, 25ge0p1rpd 13001 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
27263ad2antl2 1187 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
28273adant3 1132 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
29 nfv 1914 . . . . . . . . 9 𝑠𝜑
30 nfv 1914 . . . . . . . . 9 𝑠 𝑎 ∈ ℝ
31 nfra1 3259 . . . . . . . . 9 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎
3229, 30, 31nf3an 1901 . . . . . . . 8 𝑠(𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
33 nfv 1914 . . . . . . . 8 𝑠 𝑐 ∈ (-π[,]π)
34 nfra1 3259 . . . . . . . 8 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
3532, 33, 34nf3an 1901 . . . . . . 7 𝑠((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
36 simpl11 1249 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
37 simpl12 1250 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
3836, 37jca 511 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (𝜑𝑎 ∈ ℝ))
39 simpl13 1251 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
40 rspa 3224 . . . . . . . . . . 11 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
4139, 40sylancom 588 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
42 simpl2 1193 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
4338, 41, 42jca31 514 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)))
44 rspa 3224 . . . . . . . . . 10 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
45443ad2antl3 1188 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
46 simpr 484 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
47 simp-5l 784 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
48 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
49 fourierdlem77.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℝ⟶ℝ)
50 fourierdlem77.x . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
51 fourierdlem77.y . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
52 fourierdlem77.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ℝ)
53 fourierdlem77.h . . . . . . . . . . . . . . . . . 18 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
5449, 50, 51, 52, 53fourierdlem9 46087 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:(-π[,]π)⟶ℝ)
5554ffvelcdmda 7038 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℝ)
5619ffvelcdmi 7037 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℝ)
5756adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℝ)
5855, 57remulcld 11180 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
59 fourierdlem77.u . . . . . . . . . . . . . . . 16 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
6059fvmpt2 6961 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6148, 58, 60syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6261, 58eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
6362recnd 11178 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
6463abscld 15381 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6547, 64sylancom 588 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
66 simp-5r 785 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
67 simpllr 775 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
6866, 67, 24syl2anc 584 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
69 peano2re 11323 . . . . . . . . . . 11 ((abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7161fveq2d 6844 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7247, 71sylancom 588 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7355recnd 11178 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℂ)
7473abscld 15381 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
7547, 74sylancom 588 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
76 recn 11134 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
7776abscld 15381 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → (abs‘𝑎) ∈ ℝ)
7866, 77syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
7956recnd 11178 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℂ)
8079abscld 15381 . . . . . . . . . . . . . . 15 (𝑠 ∈ (-π[,]π) → (abs‘(𝐾𝑠)) ∈ ℝ)
8180adantl 481 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ∈ ℝ)
8220recnd 11178 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℂ)
8382abscld 15381 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → (abs‘(𝐾𝑐)) ∈ ℝ)
8467, 83syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑐)) ∈ ℝ)
8573absge0d 15389 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8647, 85sylancom 588 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8782absge0d 15389 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → 0 ≤ (abs‘(𝐾𝑐)))
8867, 87syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐾𝑐)))
8974ad4ant14 752 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
90 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
9177ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
92 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
9390leabsd 15357 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ≤ (abs‘𝑎))
9489, 90, 91, 92, 93letrd 11307 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
9594ad4ant14 752 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
96 simplr 768 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
9775, 78, 81, 84, 86, 88, 95, 96lemul12bd 12102 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))) ≤ ((abs‘𝑎) · (abs‘(𝐾𝑐))))
9857recnd 11178 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℂ)
9973, 98absmuld 15399 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10047, 99sylancom 588 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10176adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℂ)
10221recnd 11178 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℂ)
103101, 102absmuld 15399 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10466, 67, 103syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10597, 100, 1043brtr4d 5134 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10672, 105eqbrtrd 5124 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10768ltp1d 12089 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10865, 68, 70, 106, 107lelttrd 11308 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10965, 70, 108ltled 11298 . . . . . . . . 9 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
11043, 45, 46, 109syl21anc 837 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
111110ex 412 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → (𝑠 ∈ (-π[,]π) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
11235, 111ralrimi 3233 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
113 breq2 5106 . . . . . . . 8 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → ((abs‘(𝑈𝑠)) ≤ 𝑏 ↔ (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
114113ralbidv 3156 . . . . . . 7 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
115114rspcev 3585 . . . . . 6 ((((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
11628, 112, 115syl2anc 584 . . . . 5 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
117116rexlimdv3a 3138 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
11817, 117mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
119118rexlimdv3a 3138 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
1201, 119mpd 15 1 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  ifcif 4484   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  2c2 12217  +crp 12927  [,]cicc 13285  abscabs 15176  sincsin 16005  πcpi 16008  cnccncf 24745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-t1 23177  df-haus 23178  df-cmp 23250  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744
This theorem is referenced by:  fourierdlem87  46164
  Copyright terms: Public domain W3C validator