Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem77 Structured version   Visualization version   GIF version

Theorem fourierdlem77 46104
Description: If 𝐻 is bounded, then 𝑈 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem77.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem77.x (𝜑𝑋 ∈ ℝ)
fourierdlem77.y (𝜑𝑌 ∈ ℝ)
fourierdlem77.w (𝜑𝑊 ∈ ℝ)
fourierdlem77.h 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
fourierdlem77.k 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
fourierdlem77.u 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
fourierdlem77.bd (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
Assertion
Ref Expression
fourierdlem77 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐾,𝑏,𝑠   𝑈,𝑎,𝑏   𝜑,𝑎,𝑠
Allowed substitution hints:   𝜑(𝑏)   𝑈(𝑠)   𝐹(𝑠,𝑎,𝑏)   𝐻(𝑠,𝑎,𝑏)   𝐾(𝑎)   𝑊(𝑠,𝑎,𝑏)   𝑋(𝑠,𝑎,𝑏)   𝑌(𝑠,𝑎,𝑏)

Proof of Theorem fourierdlem77
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem77.bd . 2 (𝜑 → ∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
2 pire 26518 . . . . . . . . . 10 π ∈ ℝ
32renegcli 11597 . . . . . . . . 9 -π ∈ ℝ
43a1i 11 . . . . . . . 8 (⊤ → -π ∈ ℝ)
52a1i 11 . . . . . . . 8 (⊤ → π ∈ ℝ)
6 pirp 26521 . . . . . . . . . . 11 π ∈ ℝ+
7 neglt 45199 . . . . . . . . . . 11 (π ∈ ℝ+ → -π < π)
86, 7ax-mp 5 . . . . . . . . . 10 -π < π
93, 2, 8ltleii 11413 . . . . . . . . 9 -π ≤ π
109a1i 11 . . . . . . . 8 (⊤ → -π ≤ π)
11 fourierdlem77.k . . . . . . . . . 10 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
1211fourierdlem62 46089 . . . . . . . . 9 𝐾 ∈ ((-π[,]π)–cn→ℝ)
1312a1i 11 . . . . . . . 8 (⊤ → 𝐾 ∈ ((-π[,]π)–cn→ℝ))
144, 5, 10, 13evthiccabs 45414 . . . . . . 7 (⊤ → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦))))
1514mptru 1544 . . . . . 6 (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ ∃𝑥 ∈ (-π[,]π)∀𝑦 ∈ (-π[,]π)(abs‘(𝐾𝑥)) ≤ (abs‘(𝐾𝑦)))
1615simpli 483 . . . . 5 𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
1716a1i 11 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
18 simpl 482 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
1911fourierdlem43 46071 . . . . . . . . . . . . . 14 𝐾:(-π[,]π)⟶ℝ
2019ffvelcdmi 7117 . . . . . . . . . . . . 13 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℝ)
2120adantl 481 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℝ)
2218, 21remulcld 11320 . . . . . . . . . . 11 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℝ)
2322recnd 11318 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝑎 · (𝐾𝑐)) ∈ ℂ)
2423abscld 15485 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
2523absge0d 15493 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝑎 · (𝐾𝑐))))
2624, 25ge0p1rpd 13129 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
27263ad2antl2 1186 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
28273adant3 1132 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+)
29 nfv 1913 . . . . . . . . 9 𝑠𝜑
30 nfv 1913 . . . . . . . . 9 𝑠 𝑎 ∈ ℝ
31 nfra1 3290 . . . . . . . . 9 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎
3229, 30, 31nf3an 1900 . . . . . . . 8 𝑠(𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
33 nfv 1913 . . . . . . . 8 𝑠 𝑐 ∈ (-π[,]π)
34 nfra1 3290 . . . . . . . 8 𝑠𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))
3532, 33, 34nf3an 1900 . . . . . . 7 𝑠((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
36 simpl11 1248 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
37 simpl12 1249 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
3836, 37jca 511 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (𝜑𝑎 ∈ ℝ))
39 simpl13 1250 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎)
40 rspa 3254 . . . . . . . . . . 11 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
4139, 40sylancom 587 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
42 simpl2 1192 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
4338, 41, 42jca31 514 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)))
44 rspa 3254 . . . . . . . . . 10 ((∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
45443ad2antl3 1187 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
46 simpr 484 . . . . . . . . 9 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
47 simp-5l 784 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝜑)
48 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
49 fourierdlem77.f . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℝ⟶ℝ)
50 fourierdlem77.x . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
51 fourierdlem77.y . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
52 fourierdlem77.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ℝ)
53 fourierdlem77.h . . . . . . . . . . . . . . . . . 18 𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))
5449, 50, 51, 52, 53fourierdlem9 46037 . . . . . . . . . . . . . . . . 17 (𝜑𝐻:(-π[,]π)⟶ℝ)
5554ffvelcdmda 7118 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℝ)
5619ffvelcdmi 7117 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℝ)
5756adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℝ)
5855, 57remulcld 11320 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ)
59 fourierdlem77.u . . . . . . . . . . . . . . . 16 𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))
6059fvmpt2 7040 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π[,]π) ∧ ((𝐻𝑠) · (𝐾𝑠)) ∈ ℝ) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6148, 58, 60syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) = ((𝐻𝑠) · (𝐾𝑠)))
6261, 58eqeltrd 2844 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℝ)
6362recnd 11318 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑈𝑠) ∈ ℂ)
6463abscld 15485 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
6547, 64sylancom 587 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ∈ ℝ)
66 simp-5r 785 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
67 simpllr 775 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 𝑐 ∈ (-π[,]π))
6866, 67, 24syl2anc 583 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ)
69 peano2re 11463 . . . . . . . . . . 11 ((abs‘(𝑎 · (𝐾𝑐))) ∈ ℝ → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7068, 69syl 17 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ)
7161fveq2d 6924 . . . . . . . . . . . . 13 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7247, 71sylancom 587 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) = (abs‘((𝐻𝑠) · (𝐾𝑠))))
7355recnd 11318 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐻𝑠) ∈ ℂ)
7473abscld 15485 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
7547, 74sylancom 587 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
76 recn 11274 . . . . . . . . . . . . . . . 16 (𝑎 ∈ ℝ → 𝑎 ∈ ℂ)
7776abscld 15485 . . . . . . . . . . . . . . 15 (𝑎 ∈ ℝ → (abs‘𝑎) ∈ ℝ)
7866, 77syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
7956recnd 11318 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (-π[,]π) → (𝐾𝑠) ∈ ℂ)
8079abscld 15485 . . . . . . . . . . . . . . 15 (𝑠 ∈ (-π[,]π) → (abs‘(𝐾𝑠)) ∈ ℝ)
8180adantl 481 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ∈ ℝ)
8220recnd 11318 . . . . . . . . . . . . . . . 16 (𝑐 ∈ (-π[,]π) → (𝐾𝑐) ∈ ℂ)
8382abscld 15485 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → (abs‘(𝐾𝑐)) ∈ ℝ)
8467, 83syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑐)) ∈ ℝ)
8573absge0d 15493 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8647, 85sylancom 587 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐻𝑠)))
8782absge0d 15493 . . . . . . . . . . . . . . 15 (𝑐 ∈ (-π[,]π) → 0 ≤ (abs‘(𝐾𝑐)))
8867, 87syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → 0 ≤ (abs‘(𝐾𝑐)))
8974ad4ant14 751 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ∈ ℝ)
90 simpllr 775 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ∈ ℝ)
9177ad3antlr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘𝑎) ∈ ℝ)
92 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ 𝑎)
9390leabsd 15463 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → 𝑎 ≤ (abs‘𝑎))
9489, 90, 91, 92, 93letrd 11447 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
9594ad4ant14 751 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐻𝑠)) ≤ (abs‘𝑎))
96 simplr 768 . . . . . . . . . . . . . 14 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)))
9775, 78, 81, 84, 86, 88, 95, 96lemul12bd 12238 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))) ≤ ((abs‘𝑎) · (abs‘(𝐾𝑐))))
9857recnd 11318 . . . . . . . . . . . . . . 15 ((𝜑𝑠 ∈ (-π[,]π)) → (𝐾𝑠) ∈ ℂ)
9973, 98absmuld 15503 . . . . . . . . . . . . . 14 ((𝜑𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10047, 99sylancom 587 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) = ((abs‘(𝐻𝑠)) · (abs‘(𝐾𝑠))))
10176adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → 𝑎 ∈ ℂ)
10221recnd 11318 . . . . . . . . . . . . . . 15 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (𝐾𝑐) ∈ ℂ)
103101, 102absmuld 15503 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10466, 67, 103syl2anc 583 . . . . . . . . . . . . 13 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) = ((abs‘𝑎) · (abs‘(𝐾𝑐))))
10597, 100, 1043brtr4d 5198 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘((𝐻𝑠) · (𝐾𝑠))) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10672, 105eqbrtrd 5188 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ (abs‘(𝑎 · (𝐾𝑐))))
10768ltp1d 12225 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑎 · (𝐾𝑐))) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10865, 68, 70, 106, 107lelttrd 11448 . . . . . . . . . 10 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) < ((abs‘(𝑎 · (𝐾𝑐))) + 1))
10965, 70, 108ltled 11438 . . . . . . . . 9 ((((((𝜑𝑎 ∈ ℝ) ∧ (abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π)) ∧ (abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
11043, 45, 46, 109syl21anc 837 . . . . . . . 8 ((((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) ∧ 𝑠 ∈ (-π[,]π)) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
111110ex 412 . . . . . . 7 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → (𝑠 ∈ (-π[,]π) → (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
11235, 111ralrimi 3263 . . . . . 6 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1))
113 breq2 5170 . . . . . . . 8 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → ((abs‘(𝑈𝑠)) ≤ 𝑏 ↔ (abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
114113ralbidv 3184 . . . . . . 7 (𝑏 = ((abs‘(𝑎 · (𝐾𝑐))) + 1) → (∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏 ↔ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)))
115114rspcev 3635 . . . . . 6 ((((abs‘(𝑎 · (𝐾𝑐))) + 1) ∈ ℝ+ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ ((abs‘(𝑎 · (𝐾𝑐))) + 1)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
11628, 112, 115syl2anc 583 . . . . 5 (((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) ∧ 𝑐 ∈ (-π[,]π) ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐))) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
117116rexlimdv3a 3165 . . . 4 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → (∃𝑐 ∈ (-π[,]π)∀𝑠 ∈ (-π[,]π)(abs‘(𝐾𝑠)) ≤ (abs‘(𝐾𝑐)) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
11817, 117mpd 15 . . 3 ((𝜑𝑎 ∈ ℝ ∧ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎) → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
119118rexlimdv3a 3165 . 2 (𝜑 → (∃𝑎 ∈ ℝ ∀𝑠 ∈ (-π[,]π)(abs‘(𝐻𝑠)) ≤ 𝑎 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏))
1201, 119mpd 15 1 (𝜑 → ∃𝑏 ∈ ℝ+𝑠 ∈ (-π[,]π)(abs‘(𝑈𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wral 3067  wrex 3076  ifcif 4548   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  +crp 13057  [,]cicc 13410  abscabs 15283  sincsin 16111  πcpi 16114  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  fourierdlem87  46114
  Copyright terms: Public domain W3C validator