MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0tsms Structured version   Visualization version   GIF version

Theorem xrge0tsms 23049
Description: Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Proof shortened by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
xrge0tsms.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0tsms.a (𝜑𝐴𝑉)
xrge0tsms.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0tsms.s 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < )
Assertion
Ref Expression
xrge0tsms (𝜑 → (𝐺 tsums 𝐹) = {𝑆})
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝜑,𝑠   𝐺,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑉(𝑠)

Proof of Theorem xrge0tsms
Dummy variables 𝑟 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0tsms.s . . . . 5 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < )
2 iccssxr 12572 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3 xrge0tsms.g . . . . . . . . . . . 12 𝐺 = (ℝ*𝑠s (0[,]+∞))
4 xrsbas 20162 . . . . . . . . . . . 12 * = (Base‘ℝ*𝑠)
53, 4ressbas2 16331 . . . . . . . . . . 11 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
62, 5ax-mp 5 . . . . . . . . . 10 (0[,]+∞) = (Base‘𝐺)
7 eqid 2778 . . . . . . . . . . . 12 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
87xrge0subm 20187 . . . . . . . . . . 11 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
9 xrex 12138 . . . . . . . . . . . . . . 15 * ∈ V
10 difexg 5047 . . . . . . . . . . . . . . 15 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
119, 10ax-mp 5 . . . . . . . . . . . . . 14 (ℝ* ∖ {-∞}) ∈ V
12 simpl 476 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
13 ge0nemnf 12320 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
1412, 13jca 507 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
15 elxrge0 12599 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
16 eldifsn 4550 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
1714, 15, 163imtr4i 284 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
1817ssriv 3825 . . . . . . . . . . . . . 14 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
19 ressabs 16340 . . . . . . . . . . . . . 14 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
2011, 18, 19mp2an 682 . . . . . . . . . . . . 13 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
213, 20eqtr4i 2805 . . . . . . . . . . . 12 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
227xrs10 20185 . . . . . . . . . . . 12 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
2321, 22subm0 17746 . . . . . . . . . . 11 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
248, 23ax-mp 5 . . . . . . . . . 10 0 = (0g𝐺)
25 xrge0cmn 20188 . . . . . . . . . . . 12 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
263, 25eqeltri 2855 . . . . . . . . . . 11 𝐺 ∈ CMnd
2726a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
28 elfpw 8558 . . . . . . . . . . . 12 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
2928simprbi 492 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
3029adantl 475 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
31 xrge0tsms.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶(0[,]+∞))
3228simplbi 493 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
33 fssres 6322 . . . . . . . . . . 11 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
3431, 32, 33syl2an 589 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
35 c0ex 10372 . . . . . . . . . . . 12 0 ∈ V
3635a1i 11 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
3734, 30, 36fdmfifsupp 8575 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp 0)
386, 24, 27, 30, 34, 37gsumcl 18706 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
392, 38sseldi 3819 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
4039fmpttd 6651 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
4140frnd 6300 . . . . . 6 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
42 supxrcl 12461 . . . . . 6 (ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* → sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ∈ ℝ*)
4341, 42syl 17 . . . . 5 (𝜑 → sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ∈ ℝ*)
441, 43syl5eqel 2863 . . . 4 (𝜑𝑆 ∈ ℝ*)
45 0ss 4198 . . . . . . . 8 ∅ ⊆ 𝐴
46 0fin 8478 . . . . . . . 8 ∅ ∈ Fin
47 elfpw 8558 . . . . . . . 8 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
4845, 46, 47mpbir2an 701 . . . . . . 7 ∅ ∈ (𝒫 𝐴 ∩ Fin)
49 0cn 10370 . . . . . . 7 0 ∈ ℂ
50 eqid 2778 . . . . . . . 8 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
51 reseq2 5639 . . . . . . . . . . 11 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
52 res0 5648 . . . . . . . . . . 11 (𝐹 ↾ ∅) = ∅
5351, 52syl6eq 2830 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = ∅)
5453oveq2d 6940 . . . . . . . . 9 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
5524gsum0 17668 . . . . . . . . 9 (𝐺 Σg ∅) = 0
5654, 55syl6eq 2830 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5750, 56elrnmpt1s 5621 . . . . . . 7 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5848, 49, 57mp2an 682 . . . . . 6 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
59 supxrub 12470 . . . . . 6 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* ∧ 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))) → 0 ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
6041, 58, 59sylancl 580 . . . . 5 (𝜑 → 0 ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
6160, 1syl6breqr 4930 . . . 4 (𝜑 → 0 ≤ 𝑆)
62 elxrge0 12599 . . . 4 (𝑆 ∈ (0[,]+∞) ↔ (𝑆 ∈ ℝ* ∧ 0 ≤ 𝑆))
6344, 61, 62sylanbrc 578 . . 3 (𝜑𝑆 ∈ (0[,]+∞))
64 letop 21422 . . . . . 6 (ordTop‘ ≤ ) ∈ Top
65 ovex 6956 . . . . . 6 (0[,]+∞) ∈ V
66 elrest 16478 . . . . . 6 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V) → (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↔ ∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞))))
6764, 65, 66mp2an 682 . . . . 5 (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↔ ∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞)))
68 inss1 4053 . . . . . . . . 9 (𝑣 ∩ (0[,]+∞)) ⊆ 𝑣
6968sseli 3817 . . . . . . . 8 (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → 𝑆𝑣)
70 simplrl 767 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑣 ∈ (ordTop‘ ≤ ))
71 reex 10365 . . . . . . . . . . . . . . 15 ℝ ∈ V
72 elrestr 16479 . . . . . . . . . . . . . . 15 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑣 ∈ (ordTop‘ ≤ )) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
7364, 71, 72mp3an12 1524 . . . . . . . . . . . . . 14 (𝑣 ∈ (ordTop‘ ≤ ) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
7470, 73syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
75 eqid 2778 . . . . . . . . . . . . . 14 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
7675xrtgioo 23021 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
7774, 76syl6eleqr 2870 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑣 ∩ ℝ) ∈ (topGen‘ran (,)))
78 simplrr 768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆𝑣)
79 simpr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
8078, 79elind 4021 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ (𝑣 ∩ ℝ))
81 tg2 21181 . . . . . . . . . . . 12 (((𝑣 ∩ ℝ) ∈ (topGen‘ran (,)) ∧ 𝑆 ∈ (𝑣 ∩ ℝ)) → ∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)))
8277, 80, 81syl2anc 579 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → ∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)))
83 ioof 12588 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
84 ffn 6293 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
85 ovelrn 7089 . . . . . . . . . . . . . 14 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤)))
8683, 84, 85mp2b 10 . . . . . . . . . . . . 13 (𝑢 ∈ ran (,) ↔ ∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤))
87 simprrr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))
8887adantr 474 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))
89 inss1 4053 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∩ ℝ) ⊆ 𝑣
9088, 89syl6ss 3833 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝑟(,)𝑤) ⊆ 𝑣)
9126a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐺 ∈ CMnd)
92 simprrl 771 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
93 elfpw 8558 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
9493simprbi 492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
9592, 94syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦 ∈ Fin)
96 simp-4l 773 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝜑)
9796, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐹:𝐴⟶(0[,]+∞))
9893simplbi 493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
9992, 98syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦𝐴)
10097, 99fssresd 6323 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑦):𝑦⟶(0[,]+∞))
10135a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 0 ∈ V)
102100, 95, 101fdmfifsupp 8575 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑦) finSupp 0)
1036, 24, 91, 95, 100, 102gsumcl 18706 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (0[,]+∞))
1042, 103sseldi 3819 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ ℝ*)
105 simprll 769 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 ∈ ℝ*)
106105adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 ∈ ℝ*)
107 simprrr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧𝑦)
108 ssfi 8470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ Fin ∧ 𝑧𝑦) → 𝑧 ∈ Fin)
10995, 107, 108syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧 ∈ Fin)
110107, 99sstrd 3831 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧𝐴)
11197, 110fssresd 6323 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑧):𝑧⟶(0[,]+∞))
112111, 109, 101fdmfifsupp 8575 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑧) finSupp 0)
1136, 24, 91, 109, 111, 112gsumcl 18706 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ∈ (0[,]+∞))
1142, 113sseldi 3819 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ∈ ℝ*)
115 simprlr 770 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 < (𝐺 Σg (𝐹𝑧)))
116 xrge0tsms.a . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐴𝑉)
11796, 116syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐴𝑉)
1183, 117, 97, 92, 107xrge0gsumle 23048 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ≤ (𝐺 Σg (𝐹𝑦)))
119106, 114, 104, 115, 118xrltletrd 12308 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 < (𝐺 Σg (𝐹𝑦)))
12096, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 ∈ ℝ*)
121 simprlr 770 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑤 ∈ ℝ*)
122121adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑤 ∈ ℝ*)
12396, 41syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
124 ovex 6956 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 Σg (𝐹𝑦)) ∈ V
125 reseq2 5639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 𝑦 → (𝐹𝑠) = (𝐹𝑦))
126125oveq2d 6940 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑦 → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg (𝐹𝑦)))
12750, 126elrnmpt1s 5621 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐺 Σg (𝐹𝑦)) ∈ V) → (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
12892, 124, 127sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
129 supxrub 12470 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* ∧ (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))) → (𝐺 Σg (𝐹𝑦)) ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
130123, 128, 129syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
131130, 1syl6breqr 4930 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ≤ 𝑆)
132 simprrl 771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 ∈ (𝑟(,)𝑤))
133 eliooord 12549 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ (𝑟(,)𝑤) → (𝑟 < 𝑆𝑆 < 𝑤))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟 < 𝑆𝑆 < 𝑤))
135134simprd 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 < 𝑤)
136135adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 < 𝑤)
137104, 120, 122, 131, 136xrlelttrd 12307 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) < 𝑤)
138 elioo1 12531 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) < 𝑤)))
139106, 122, 138syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) < 𝑤)))
140104, 119, 137, 139mpbir3and 1399 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤))
14190, 140sseldd 3822 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ 𝑣)
142141, 103elind 4021 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
143142anassrs 461 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
144143expr 450 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
145144ralrimiva 3148 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
146134simpld 490 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 < 𝑆)
147146, 1syl6breq 4929 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
14841ad3antrrr 720 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
149 supxrlub 12471 . . . . . . . . . . . . . . . . . . . 20 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*𝑟 ∈ ℝ*) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
150148, 105, 149syl2anc 579 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
151147, 150mpbid 224 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤)
152 ovex 6956 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Σg (𝐹𝑧)) ∈ V
153152rgenw 3106 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Σg (𝐹𝑧)) ∈ V
154 reseq2 5639 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
155154oveq2d 6940 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑧 → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg (𝐹𝑧)))
156155cbvmptv 4987 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))
157 breq2 4892 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐺 Σg (𝐹𝑧)) → (𝑟 < 𝑤𝑟 < (𝐺 Σg (𝐹𝑧))))
158156, 157rexrnmpt 6635 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Σg (𝐹𝑧)) ∈ V → (∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧))))
159153, 158ax-mp 5 . . . . . . . . . . . . . . . . . 18 (∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
160151, 159sylib 210 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
161145, 160reximddv 3199 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
162161expr 450 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (𝑟 ∈ ℝ*𝑤 ∈ ℝ*)) → ((𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
163 eleq2 2848 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑟(,)𝑤) → (𝑆𝑢𝑆 ∈ (𝑟(,)𝑤)))
164 sseq1 3845 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑟(,)𝑤) → (𝑢 ⊆ (𝑣 ∩ ℝ) ↔ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))
165163, 164anbi12d 624 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) ↔ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))))
166165imbi1d 333 . . . . . . . . . . . . . . 15 (𝑢 = (𝑟(,)𝑤) → (((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))) ↔ ((𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
167162, 166syl5ibrcom 239 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (𝑟 ∈ ℝ*𝑤 ∈ ℝ*)) → (𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
168167rexlimdvva 3221 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
16986, 168syl5bi 234 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑢 ∈ ran (,) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
170169rexlimdv 3212 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
17182, 170mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
172 simplrl 767 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑣 ∈ (ordTop‘ ≤ ))
173 simpr 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑆 = +∞)
174 simplrr 768 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑆𝑣)
175173, 174eqeltrrd 2860 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → +∞ ∈ 𝑣)
176 pnfnei 21436 . . . . . . . . . . . 12 ((𝑣 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑣) → ∃𝑟 ∈ ℝ (𝑟(,]+∞) ⊆ 𝑣)
177172, 175, 176syl2anc 579 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → ∃𝑟 ∈ ℝ (𝑟(,]+∞) ⊆ 𝑣)
178 simprr 763 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → (𝑟(,]+∞) ⊆ 𝑣)
179178ad2antrr 716 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝑟(,]+∞) ⊆ 𝑣)
18026a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐺 ∈ CMnd)
18194ad2antrl 718 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦 ∈ Fin)
182 simp-5l 775 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝜑)
183182, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐹:𝐴⟶(0[,]+∞))
18498ad2antrl 718 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦𝐴)
185183, 184fssresd 6323 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑦):𝑦⟶(0[,]+∞))
18635a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 0 ∈ V)
187185, 181, 186fdmfifsupp 8575 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑦) finSupp 0)
1886, 24, 180, 181, 185, 187gsumcl 18706 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (0[,]+∞))
1892, 188sseldi 3819 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ ℝ*)
190 rexr 10424 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
191190ad2antrl 718 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 ∈ ℝ*)
192191ad2antrr 716 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 ∈ ℝ*)
193 simprr 763 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧𝑦)
194181, 193, 108syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧 ∈ Fin)
195193, 184sstrd 3831 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧𝐴)
196183, 195fssresd 6323 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑧):𝑧⟶(0[,]+∞))
197196, 194, 186fdmfifsupp 8575 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑧) finSupp 0)
1986, 24, 180, 194, 196, 197gsumcl 18706 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ∈ (0[,]+∞))
1992, 198sseldi 3819 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ∈ ℝ*)
200 simplrr 768 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 < (𝐺 Σg (𝐹𝑧)))
201182, 116syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐴𝑉)
202 simprl 761 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
2033, 201, 183, 202, 193xrge0gsumle 23048 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ≤ (𝐺 Σg (𝐹𝑦)))
204192, 199, 189, 200, 203xrltletrd 12308 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 < (𝐺 Σg (𝐹𝑦)))
205 pnfge 12279 . . . . . . . . . . . . . . . . . 18 ((𝐺 Σg (𝐹𝑦)) ∈ ℝ* → (𝐺 Σg (𝐹𝑦)) ≤ +∞)
206189, 205syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ≤ +∞)
207 pnfxr 10432 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
208 elioc1 12533 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) ≤ +∞)))
209192, 207, 208sylancl 580 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) ≤ +∞)))
210189, 204, 206, 209mpbir3and 1399 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞))
211179, 210sseldd 3822 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ 𝑣)
212211, 188elind 4021 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
213212expr 450 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
214213ralrimiva 3148 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
215 ltpnf 12269 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ → 𝑟 < +∞)
216215ad2antrl 718 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < +∞)
217 simplr 759 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑆 = +∞)
218216, 217breqtrrd 4916 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < 𝑆)
219218, 1syl6breq 4929 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
22041ad3antrrr 720 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
221220, 191, 149syl2anc 579 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
222219, 221mpbid 224 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤)
223222, 159sylib 210 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
224214, 223reximddv 3199 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
225177, 224rexlimddv 3218 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
226 ge0nemnf 12320 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ 0 ≤ 𝑆) → 𝑆 ≠ -∞)
22744, 61, 226syl2anc 579 . . . . . . . . . . . . 13 (𝜑𝑆 ≠ -∞)
22844, 227jca 507 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ ℝ*𝑆 ≠ -∞))
229228adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → (𝑆 ∈ ℝ*𝑆 ≠ -∞))
230 xrnemnf 12266 . . . . . . . . . . 11 ((𝑆 ∈ ℝ*𝑆 ≠ -∞) ↔ (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
231229, 230sylib 210 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
232171, 225, 231mpjaodan 944 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
233232expr 450 . . . . . . . 8 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑆𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
23469, 233syl5 34 . . . . . . 7 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
235 eleq2 2848 . . . . . . . 8 (𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢𝑆 ∈ (𝑣 ∩ (0[,]+∞))))
236 eleq2 2848 . . . . . . . . . 10 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
237236imbi2d 332 . . . . . . . . 9 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
238237rexralbidv 3243 . . . . . . . 8 (𝑢 = (𝑣 ∩ (0[,]+∞)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
239235, 238imbi12d 336 . . . . . . 7 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)) ↔ (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
240234, 239syl5ibrcom 239 . . . . . 6 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
241240rexlimdva 3213 . . . . 5 (𝜑 → (∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
24267, 241syl5bi 234 . . . 4 (𝜑 → (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
243242ralrimiv 3147 . . 3 (𝜑 → ∀𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))(𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
244 xrstset 20165 . . . . . . 7 (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠)
2453, 244resstset 16442 . . . . . 6 ((0[,]+∞) ∈ V → (ordTop‘ ≤ ) = (TopSet‘𝐺))
24665, 245ax-mp 5 . . . . 5 (ordTop‘ ≤ ) = (TopSet‘𝐺)
2476, 246topnval 16485 . . . 4 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘𝐺)
248 eqid 2778 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
24926a1i 11 . . . 4 (𝜑𝐺 ∈ CMnd)
250 xrstps 21425 . . . . . . 7 *𝑠 ∈ TopSp
251 resstps 21403 . . . . . . 7 ((ℝ*𝑠 ∈ TopSp ∧ (0[,]+∞) ∈ V) → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
252250, 65, 251mp2an 682 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
2533, 252eqeltri 2855 . . . . 5 𝐺 ∈ TopSp
254253a1i 11 . . . 4 (𝜑𝐺 ∈ TopSp)
2556, 247, 248, 249, 254, 116, 31eltsms 22348 . . 3 (𝜑 → (𝑆 ∈ (𝐺 tsums 𝐹) ↔ (𝑆 ∈ (0[,]+∞) ∧ ∀𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))(𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
25663, 243, 255mpbir2and 703 . 2 (𝜑𝑆 ∈ (𝐺 tsums 𝐹))
257 letsr 17617 . . . . 5 ≤ ∈ TosetRel
258 ordthaus 21600 . . . . 5 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ Haus)
259257, 258mp1i 13 . . . 4 (𝜑 → (ordTop‘ ≤ ) ∈ Haus)
260 resthaus 21584 . . . 4 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
261259, 65, 260sylancl 580 . . 3 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2626, 249, 254, 116, 31, 247, 261haustsms2 22352 . 2 (𝜑 → (𝑆 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑆}))
263256, 262mpd 15 1 (𝜑 → (𝐺 tsums 𝐹) = {𝑆})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  Vcvv 3398  cdif 3789  cin 3791  wss 3792  c0 4141  𝒫 cpw 4379  {csn 4398   class class class wbr 4888  cmpt 4967   × cxp 5355  ran crn 5358  cres 5359   Fn wfn 6132  wf 6133  cfv 6137  (class class class)co 6924  Fincfn 8243  supcsup 8636  cc 10272  cr 10273  0cc0 10274  +∞cpnf 10410  -∞cmnf 10411  *cxr 10412   < clt 10413  cle 10414  (,)cioo 12491  (,]cioc 12492  [,]cicc 12494  Basecbs 16259  s cress 16260  TopSetcts 16348  t crest 16471  topGenctg 16488  0gc0g 16490   Σg cgsu 16491  ordTopcordt 16549  *𝑠cxrs 16550   TosetRel ctsr 17589  SubMndcsubmnd 17724  CMndccmn 18583  Topctop 21109  TopSpctps 21148  Hauscha 21524   tsums ctsu 22341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-7 11447  df-8 11448  df-9 11449  df-n0 11647  df-z 11733  df-dec 11850  df-uz 11997  df-q 12100  df-xadd 12262  df-ioo 12495  df-ioc 12496  df-ico 12497  df-icc 12498  df-fz 12648  df-fzo 12789  df-seq 13124  df-hash 13440  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-tset 16361  df-ple 16362  df-ds 16364  df-rest 16473  df-topn 16474  df-0g 16492  df-gsum 16493  df-topgen 16494  df-ordt 16551  df-xrs 16552  df-mre 16636  df-mrc 16637  df-acs 16639  df-ps 17590  df-tsr 17591  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-cntz 18137  df-cmn 18585  df-fbas 20143  df-fg 20144  df-top 21110  df-topon 21127  df-topsp 21149  df-bases 21162  df-ntr 21236  df-nei 21314  df-cn 21443  df-haus 21531  df-fil 22062  df-fm 22154  df-flim 22155  df-flf 22156  df-tsms 22342
This theorem is referenced by:  xrge0tsms2  23050  sge0tsms  41531
  Copyright terms: Public domain W3C validator