MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0tsms Structured version   Visualization version   GIF version

Theorem xrge0tsms 24779
Description: Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Proof shortened by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
xrge0tsms.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0tsms.a (𝜑𝐴𝑉)
xrge0tsms.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0tsms.s 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < )
Assertion
Ref Expression
xrge0tsms (𝜑 → (𝐺 tsums 𝐹) = {𝑆})
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝜑,𝑠   𝐺,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑉(𝑠)

Proof of Theorem xrge0tsms
Dummy variables 𝑟 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0tsms.s . . . . 5 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < )
2 iccssxr 13452 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3 xrge0tsms.g . . . . . . . . . . . 12 𝐺 = (ℝ*𝑠s (0[,]+∞))
4 xrsbas 21351 . . . . . . . . . . . 12 * = (Base‘ℝ*𝑠)
53, 4ressbas2 17264 . . . . . . . . . . 11 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
62, 5ax-mp 5 . . . . . . . . . 10 (0[,]+∞) = (Base‘𝐺)
7 eqid 2736 . . . . . . . . . . . 12 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
87xrge0subm 21380 . . . . . . . . . . 11 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
9 xrex 13008 . . . . . . . . . . . . . . 15 * ∈ V
109difexi 5305 . . . . . . . . . . . . . 14 (ℝ* ∖ {-∞}) ∈ V
11 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
12 ge0nemnf 13194 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
1311, 12jca 511 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
14 elxrge0 13479 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
15 eldifsn 4767 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
1613, 14, 153imtr4i 292 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
1716ssriv 3967 . . . . . . . . . . . . . 14 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
18 ressabs 17274 . . . . . . . . . . . . . 14 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
1910, 17, 18mp2an 692 . . . . . . . . . . . . 13 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
203, 19eqtr4i 2762 . . . . . . . . . . . 12 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
217xrs10 21378 . . . . . . . . . . . 12 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
2220, 21subm0 18798 . . . . . . . . . . 11 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
238, 22ax-mp 5 . . . . . . . . . 10 0 = (0g𝐺)
24 xrge0cmn 21381 . . . . . . . . . . . 12 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
253, 24eqeltri 2831 . . . . . . . . . . 11 𝐺 ∈ CMnd
2625a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
27 elinel2 4182 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
2827adantl 481 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
29 xrge0tsms.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶(0[,]+∞))
30 elfpw 9371 . . . . . . . . . . . 12 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
3130simplbi 497 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
32 fssres 6749 . . . . . . . . . . 11 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
3329, 31, 32syl2an 596 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
34 c0ex 11234 . . . . . . . . . . . 12 0 ∈ V
3534a1i 11 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ∈ V)
3633, 28, 35fdmfifsupp 9392 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp 0)
376, 23, 26, 28, 33, 36gsumcl 19901 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
382, 37sselid 3961 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
3938fmpttd 7110 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
4039frnd 6719 . . . . . 6 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
41 supxrcl 13336 . . . . . 6 (ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* → sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ∈ ℝ*)
4240, 41syl 17 . . . . 5 (𝜑 → sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ∈ ℝ*)
431, 42eqeltrid 2839 . . . 4 (𝜑𝑆 ∈ ℝ*)
44 0ss 4380 . . . . . . . 8 ∅ ⊆ 𝐴
45 0fi 9061 . . . . . . . 8 ∅ ∈ Fin
46 elfpw 9371 . . . . . . . 8 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
4744, 45, 46mpbir2an 711 . . . . . . 7 ∅ ∈ (𝒫 𝐴 ∩ Fin)
48 0cn 11232 . . . . . . 7 0 ∈ ℂ
49 eqid 2736 . . . . . . . 8 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
50 reseq2 5966 . . . . . . . . . . 11 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
51 res0 5975 . . . . . . . . . . 11 (𝐹 ↾ ∅) = ∅
5250, 51eqtrdi 2787 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = ∅)
5352oveq2d 7426 . . . . . . . . 9 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
5423gsum0 18667 . . . . . . . . 9 (𝐺 Σg ∅) = 0
5553, 54eqtrdi 2787 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5649, 55elrnmpt1s 5944 . . . . . . 7 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5747, 48, 56mp2an 692 . . . . . 6 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
58 supxrub 13345 . . . . . 6 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* ∧ 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))) → 0 ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
5940, 57, 58sylancl 586 . . . . 5 (𝜑 → 0 ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
6059, 1breqtrrdi 5166 . . . 4 (𝜑 → 0 ≤ 𝑆)
61 elxrge0 13479 . . . 4 (𝑆 ∈ (0[,]+∞) ↔ (𝑆 ∈ ℝ* ∧ 0 ≤ 𝑆))
6243, 60, 61sylanbrc 583 . . 3 (𝜑𝑆 ∈ (0[,]+∞))
63 letop 23149 . . . . . 6 (ordTop‘ ≤ ) ∈ Top
64 ovex 7443 . . . . . 6 (0[,]+∞) ∈ V
65 elrest 17446 . . . . . 6 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V) → (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↔ ∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞))))
6663, 64, 65mp2an 692 . . . . 5 (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↔ ∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞)))
67 elinel1 4181 . . . . . . . 8 (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → 𝑆𝑣)
68 reex 11225 . . . . . . . . . . . . . 14 ℝ ∈ V
69 simplrl 776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑣 ∈ (ordTop‘ ≤ ))
70 elrestr 17447 . . . . . . . . . . . . . 14 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑣 ∈ (ordTop‘ ≤ )) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
7163, 68, 69, 70mp3an12i 1467 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
72 eqid 2736 . . . . . . . . . . . . . 14 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
7372xrtgioo 24751 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
7471, 73eleqtrrdi 2846 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑣 ∩ ℝ) ∈ (topGen‘ran (,)))
75 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆𝑣)
76 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
7775, 76elind 4180 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ (𝑣 ∩ ℝ))
78 tg2 22908 . . . . . . . . . . . 12 (((𝑣 ∩ ℝ) ∈ (topGen‘ran (,)) ∧ 𝑆 ∈ (𝑣 ∩ ℝ)) → ∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)))
7974, 77, 78syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → ∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)))
80 ioof 13469 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
81 ffn 6711 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
82 ovelrn 7588 . . . . . . . . . . . . . 14 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤)))
8380, 81, 82mp2b 10 . . . . . . . . . . . . 13 (𝑢 ∈ ran (,) ↔ ∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤))
84 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))
8584adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))
86 inss1 4217 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∩ ℝ) ⊆ 𝑣
8785, 86sstrdi 3976 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝑟(,)𝑤) ⊆ 𝑣)
8825a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐺 ∈ CMnd)
89 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
90 elinel2 4182 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦 ∈ Fin)
92 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝜑)
9392, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐹:𝐴⟶(0[,]+∞))
94 elfpw 9371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
9594simplbi 497 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
9689, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦𝐴)
9793, 96fssresd 6750 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑦):𝑦⟶(0[,]+∞))
9834a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 0 ∈ V)
9997, 91, 98fdmfifsupp 9392 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑦) finSupp 0)
1006, 23, 88, 91, 97, 99gsumcl 19901 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (0[,]+∞))
1012, 100sselid 3961 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ ℝ*)
102 simprll 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 ∈ ℝ*)
103102adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 ∈ ℝ*)
104 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧𝑦)
10591, 104ssfid 9278 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧 ∈ Fin)
106104, 96sstrd 3974 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧𝐴)
10793, 106fssresd 6750 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑧):𝑧⟶(0[,]+∞))
108107, 105, 98fdmfifsupp 9392 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑧) finSupp 0)
1096, 23, 88, 105, 107, 108gsumcl 19901 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ∈ (0[,]+∞))
1102, 109sselid 3961 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ∈ ℝ*)
111 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 < (𝐺 Σg (𝐹𝑧)))
112 xrge0tsms.a . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐴𝑉)
11392, 112syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐴𝑉)
1143, 113, 93, 89, 104xrge0gsumle 24778 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ≤ (𝐺 Σg (𝐹𝑦)))
115103, 110, 101, 111, 114xrltletrd 13182 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 < (𝐺 Σg (𝐹𝑦)))
11692, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 ∈ ℝ*)
117 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑤 ∈ ℝ*)
118117adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑤 ∈ ℝ*)
11992, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
120 ovex 7443 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 Σg (𝐹𝑦)) ∈ V
121 reseq2 5966 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 𝑦 → (𝐹𝑠) = (𝐹𝑦))
122121oveq2d 7426 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑦 → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg (𝐹𝑦)))
12349, 122elrnmpt1s 5944 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐺 Σg (𝐹𝑦)) ∈ V) → (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
12489, 120, 123sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
125 supxrub 13345 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* ∧ (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))) → (𝐺 Σg (𝐹𝑦)) ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
126119, 124, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
127126, 1breqtrrdi 5166 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ≤ 𝑆)
128 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 ∈ (𝑟(,)𝑤))
129 eliooord 13427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ (𝑟(,)𝑤) → (𝑟 < 𝑆𝑆 < 𝑤))
130128, 129syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟 < 𝑆𝑆 < 𝑤))
131130simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 < 𝑤)
132131adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 < 𝑤)
133101, 116, 118, 127, 132xrlelttrd 13181 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) < 𝑤)
134 elioo1 13407 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) < 𝑤)))
135103, 118, 134syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) < 𝑤)))
136101, 115, 133, 135mpbir3and 1343 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤))
13787, 136sseldd 3964 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ 𝑣)
138137, 100elind 4180 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
139138anassrs 467 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
140139expr 456 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
141140ralrimiva 3133 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
142130simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 < 𝑆)
143142, 1breqtrdi 5165 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
14440ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
145 supxrlub 13346 . . . . . . . . . . . . . . . . . . . 20 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*𝑟 ∈ ℝ*) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
146144, 102, 145syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
147143, 146mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤)
148 ovex 7443 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Σg (𝐹𝑧)) ∈ V
149148rgenw 3056 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Σg (𝐹𝑧)) ∈ V
150 reseq2 5966 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
151150oveq2d 7426 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑧 → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg (𝐹𝑧)))
152151cbvmptv 5230 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))
153 breq2 5128 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐺 Σg (𝐹𝑧)) → (𝑟 < 𝑤𝑟 < (𝐺 Σg (𝐹𝑧))))
154152, 153rexrnmptw 7090 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Σg (𝐹𝑧)) ∈ V → (∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧))))
155149, 154ax-mp 5 . . . . . . . . . . . . . . . . . 18 (∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
156147, 155sylib 218 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
157141, 156reximddv 3157 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
158157expr 456 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (𝑟 ∈ ℝ*𝑤 ∈ ℝ*)) → ((𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
159 eleq2 2824 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑟(,)𝑤) → (𝑆𝑢𝑆 ∈ (𝑟(,)𝑤)))
160 sseq1 3989 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑟(,)𝑤) → (𝑢 ⊆ (𝑣 ∩ ℝ) ↔ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))
161159, 160anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) ↔ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))))
162161imbi1d 341 . . . . . . . . . . . . . . 15 (𝑢 = (𝑟(,)𝑤) → (((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))) ↔ ((𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
163158, 162syl5ibrcom 247 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (𝑟 ∈ ℝ*𝑤 ∈ ℝ*)) → (𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
164163rexlimdvva 3202 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
16583, 164biimtrid 242 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑢 ∈ ran (,) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
166165rexlimdv 3140 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
16779, 166mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
168 simplrl 776 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑣 ∈ (ordTop‘ ≤ ))
169 simpr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑆 = +∞)
170 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑆𝑣)
171169, 170eqeltrrd 2836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → +∞ ∈ 𝑣)
172 pnfnei 23163 . . . . . . . . . . . 12 ((𝑣 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑣) → ∃𝑟 ∈ ℝ (𝑟(,]+∞) ⊆ 𝑣)
173168, 171, 172syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → ∃𝑟 ∈ ℝ (𝑟(,]+∞) ⊆ 𝑣)
174 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → (𝑟(,]+∞) ⊆ 𝑣)
175174ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝑟(,]+∞) ⊆ 𝑣)
17625a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐺 ∈ CMnd)
17790ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦 ∈ Fin)
178 simp-5l 784 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝜑)
179178, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐹:𝐴⟶(0[,]+∞))
18095ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦𝐴)
181179, 180fssresd 6750 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑦):𝑦⟶(0[,]+∞))
18234a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 0 ∈ V)
183181, 177, 182fdmfifsupp 9392 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑦) finSupp 0)
1846, 23, 176, 177, 181, 183gsumcl 19901 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (0[,]+∞))
1852, 184sselid 3961 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ ℝ*)
186 rexr 11286 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
187186ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 ∈ ℝ*)
188187ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 ∈ ℝ*)
189 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧𝑦)
190177, 189ssfid 9278 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧 ∈ Fin)
191189, 180sstrd 3974 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧𝐴)
192179, 191fssresd 6750 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑧):𝑧⟶(0[,]+∞))
193192, 190, 182fdmfifsupp 9392 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑧) finSupp 0)
1946, 23, 176, 190, 192, 193gsumcl 19901 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ∈ (0[,]+∞))
1952, 194sselid 3961 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ∈ ℝ*)
196 simplrr 777 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 < (𝐺 Σg (𝐹𝑧)))
197178, 112syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐴𝑉)
198 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
1993, 197, 179, 198, 189xrge0gsumle 24778 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ≤ (𝐺 Σg (𝐹𝑦)))
200188, 195, 185, 196, 199xrltletrd 13182 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 < (𝐺 Σg (𝐹𝑦)))
201 pnfge 13151 . . . . . . . . . . . . . . . . . 18 ((𝐺 Σg (𝐹𝑦)) ∈ ℝ* → (𝐺 Σg (𝐹𝑦)) ≤ +∞)
202185, 201syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ≤ +∞)
203 pnfxr 11294 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
204 elioc1 13409 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) ≤ +∞)))
205188, 203, 204sylancl 586 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) ≤ +∞)))
206185, 200, 202, 205mpbir3and 1343 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞))
207175, 206sseldd 3964 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ 𝑣)
208207, 184elind 4180 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
209208expr 456 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
210209ralrimiva 3133 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
211 ltpnf 13141 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ → 𝑟 < +∞)
212211ad2antrl 728 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < +∞)
213 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑆 = +∞)
214212, 213breqtrrd 5152 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < 𝑆)
215214, 1breqtrdi 5165 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
21640ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
217216, 187, 145syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
218215, 217mpbid 232 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤)
219218, 155sylib 218 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
220210, 219reximddv 3157 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
221173, 220rexlimddv 3148 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
222 ge0nemnf 13194 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ 0 ≤ 𝑆) → 𝑆 ≠ -∞)
22343, 60, 222syl2anc 584 . . . . . . . . . . . . 13 (𝜑𝑆 ≠ -∞)
22443, 223jca 511 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ ℝ*𝑆 ≠ -∞))
225224adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → (𝑆 ∈ ℝ*𝑆 ≠ -∞))
226 xrnemnf 13138 . . . . . . . . . . 11 ((𝑆 ∈ ℝ*𝑆 ≠ -∞) ↔ (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
227225, 226sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
228167, 221, 227mpjaodan 960 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
229228expr 456 . . . . . . . 8 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑆𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
23067, 229syl5 34 . . . . . . 7 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
231 eleq2 2824 . . . . . . . 8 (𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢𝑆 ∈ (𝑣 ∩ (0[,]+∞))))
232 eleq2 2824 . . . . . . . . . 10 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
233232imbi2d 340 . . . . . . . . 9 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
234233rexralbidv 3211 . . . . . . . 8 (𝑢 = (𝑣 ∩ (0[,]+∞)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
235231, 234imbi12d 344 . . . . . . 7 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)) ↔ (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
236230, 235syl5ibrcom 247 . . . . . 6 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
237236rexlimdva 3142 . . . . 5 (𝜑 → (∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
23866, 237biimtrid 242 . . . 4 (𝜑 → (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
239238ralrimiv 3132 . . 3 (𝜑 → ∀𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))(𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
240 xrstset 21354 . . . . . . 7 (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠)
2413, 240resstset 17384 . . . . . 6 ((0[,]+∞) ∈ V → (ordTop‘ ≤ ) = (TopSet‘𝐺))
24264, 241ax-mp 5 . . . . 5 (ordTop‘ ≤ ) = (TopSet‘𝐺)
2436, 242topnval 17453 . . . 4 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘𝐺)
244 eqid 2736 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
24525a1i 11 . . . 4 (𝜑𝐺 ∈ CMnd)
246 xrstps 23152 . . . . . . 7 *𝑠 ∈ TopSp
247 resstps 23130 . . . . . . 7 ((ℝ*𝑠 ∈ TopSp ∧ (0[,]+∞) ∈ V) → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
248246, 64, 247mp2an 692 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
2493, 248eqeltri 2831 . . . . 5 𝐺 ∈ TopSp
250249a1i 11 . . . 4 (𝜑𝐺 ∈ TopSp)
2516, 243, 244, 245, 250, 112, 29eltsms 24076 . . 3 (𝜑 → (𝑆 ∈ (𝐺 tsums 𝐹) ↔ (𝑆 ∈ (0[,]+∞) ∧ ∀𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))(𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
25262, 239, 251mpbir2and 713 . 2 (𝜑𝑆 ∈ (𝐺 tsums 𝐹))
253 letsr 18608 . . . . 5 ≤ ∈ TosetRel
254 ordthaus 23327 . . . . 5 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ Haus)
255253, 254mp1i 13 . . . 4 (𝜑 → (ordTop‘ ≤ ) ∈ Haus)
256 resthaus 23311 . . . 4 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
257255, 64, 256sylancl 586 . . 3 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2586, 245, 250, 112, 29, 243, 257haustsms2 24080 . 2 (𝜑 → (𝑆 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑆}))
259252, 258mpd 15 1 (𝜑 → (𝐺 tsums 𝐹) = {𝑆})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  ran crn 5660  cres 5661   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  supcsup 9457  cc 11132  cr 11133  0cc0 11134  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273   < clt 11274  cle 11275  (,)cioo 13367  (,]cioc 13368  [,]cicc 13370  Basecbs 17233  s cress 17256  TopSetcts 17282  t crest 17439  topGenctg 17456  0gc0g 17458   Σg cgsu 17459  ordTopcordt 17518  *𝑠cxrs 17519   TosetRel ctsr 18580  SubMndcsubmnd 18765  CMndccmn 19766  Topctop 22836  TopSpctps 22875  Hauscha 23251   tsums ctsu 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-xadd 13134  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-tset 17295  df-ple 17296  df-ds 17298  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-ordt 17520  df-xrs 17521  df-mre 17603  df-mrc 17604  df-acs 17606  df-ps 18581  df-tsr 18582  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-cntz 19305  df-cmn 19768  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-nei 23041  df-cn 23170  df-haus 23258  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tsms 24070
This theorem is referenced by:  xrge0tsms2  24780  sge0tsms  46376
  Copyright terms: Public domain W3C validator