MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0tsms Structured version   Visualization version   GIF version

Theorem xrge0tsms 24119
Description: Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Proof shortened by AV, 26-Jul-2019.)
Hypotheses
Ref Expression
xrge0tsms.g 𝐺 = (ℝ*𝑠 β†Ύs (0[,]+∞))
xrge0tsms.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
xrge0tsms.f (πœ‘ β†’ 𝐹:𝐴⟢(0[,]+∞))
xrge0tsms.s 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < )
Assertion
Ref Expression
xrge0tsms (πœ‘ β†’ (𝐺 tsums 𝐹) = {𝑆})
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   πœ‘,𝑠   𝐺,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑉(𝑠)

Proof of Theorem xrge0tsms
Dummy variables π‘Ÿ 𝑒 𝑣 𝑀 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0tsms.s . . . . 5 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < )
2 iccssxr 13275 . . . . . . . . 9 (0[,]+∞) βŠ† ℝ*
3 xrge0tsms.g . . . . . . . . . . . 12 𝐺 = (ℝ*𝑠 β†Ύs (0[,]+∞))
4 xrsbas 20736 . . . . . . . . . . . 12 ℝ* = (Baseβ€˜β„*𝑠)
53, 4ressbas2 17054 . . . . . . . . . . 11 ((0[,]+∞) βŠ† ℝ* β†’ (0[,]+∞) = (Baseβ€˜πΊ))
62, 5ax-mp 5 . . . . . . . . . 10 (0[,]+∞) = (Baseβ€˜πΊ)
7 eqid 2737 . . . . . . . . . . . 12 (ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞})) = (ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞}))
87xrge0subm 20761 . . . . . . . . . . 11 (0[,]+∞) ∈ (SubMndβ€˜(ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞})))
9 xrex 12840 . . . . . . . . . . . . . . 15 ℝ* ∈ V
109difexi 5283 . . . . . . . . . . . . . 14 (ℝ* βˆ– {-∞}) ∈ V
11 simpl 483 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ ℝ* ∧ 0 ≀ π‘₯) β†’ π‘₯ ∈ ℝ*)
12 ge0nemnf 13020 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ ℝ* ∧ 0 ≀ π‘₯) β†’ π‘₯ β‰  -∞)
1311, 12jca 512 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ ℝ* ∧ 0 ≀ π‘₯) β†’ (π‘₯ ∈ ℝ* ∧ π‘₯ β‰  -∞))
14 elxrge0 13302 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (0[,]+∞) ↔ (π‘₯ ∈ ℝ* ∧ 0 ≀ π‘₯))
15 eldifsn 4745 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (ℝ* βˆ– {-∞}) ↔ (π‘₯ ∈ ℝ* ∧ π‘₯ β‰  -∞))
1613, 14, 153imtr4i 291 . . . . . . . . . . . . . . 15 (π‘₯ ∈ (0[,]+∞) β†’ π‘₯ ∈ (ℝ* βˆ– {-∞}))
1716ssriv 3946 . . . . . . . . . . . . . 14 (0[,]+∞) βŠ† (ℝ* βˆ– {-∞})
18 ressabs 17064 . . . . . . . . . . . . . 14 (((ℝ* βˆ– {-∞}) ∈ V ∧ (0[,]+∞) βŠ† (ℝ* βˆ– {-∞})) β†’ ((ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞})) β†Ύs (0[,]+∞)) = (ℝ*𝑠 β†Ύs (0[,]+∞)))
1910, 17, 18mp2an 690 . . . . . . . . . . . . 13 ((ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞})) β†Ύs (0[,]+∞)) = (ℝ*𝑠 β†Ύs (0[,]+∞))
203, 19eqtr4i 2768 . . . . . . . . . . . 12 𝐺 = ((ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞})) β†Ύs (0[,]+∞))
217xrs10 20759 . . . . . . . . . . . 12 0 = (0gβ€˜(ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞})))
2220, 21subm0 18560 . . . . . . . . . . 11 ((0[,]+∞) ∈ (SubMndβ€˜(ℝ*𝑠 β†Ύs (ℝ* βˆ– {-∞}))) β†’ 0 = (0gβ€˜πΊ))
238, 22ax-mp 5 . . . . . . . . . 10 0 = (0gβ€˜πΊ)
24 xrge0cmn 20762 . . . . . . . . . . . 12 (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ CMnd
253, 24eqeltri 2834 . . . . . . . . . . 11 𝐺 ∈ CMnd
2625a1i 11 . . . . . . . . . 10 ((πœ‘ ∧ 𝑠 ∈ (𝒫 𝐴 ∩ Fin)) β†’ 𝐺 ∈ CMnd)
27 elinel2 4154 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) β†’ 𝑠 ∈ Fin)
2827adantl 482 . . . . . . . . . 10 ((πœ‘ ∧ 𝑠 ∈ (𝒫 𝐴 ∩ Fin)) β†’ 𝑠 ∈ Fin)
29 xrge0tsms.f . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:𝐴⟢(0[,]+∞))
30 elfpw 9231 . . . . . . . . . . . 12 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠 βŠ† 𝐴 ∧ 𝑠 ∈ Fin))
3130simplbi 498 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) β†’ 𝑠 βŠ† 𝐴)
32 fssres 6703 . . . . . . . . . . 11 ((𝐹:𝐴⟢(0[,]+∞) ∧ 𝑠 βŠ† 𝐴) β†’ (𝐹 β†Ύ 𝑠):π‘ βŸΆ(0[,]+∞))
3329, 31, 32syl2an 596 . . . . . . . . . 10 ((πœ‘ ∧ 𝑠 ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝐹 β†Ύ 𝑠):π‘ βŸΆ(0[,]+∞))
34 c0ex 11082 . . . . . . . . . . . 12 0 ∈ V
3534a1i 11 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑠 ∈ (𝒫 𝐴 ∩ Fin)) β†’ 0 ∈ V)
3633, 28, 35fdmfifsupp 9248 . . . . . . . . . 10 ((πœ‘ ∧ 𝑠 ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝐹 β†Ύ 𝑠) finSupp 0)
376, 23, 26, 28, 33, 36gsumcl 19621 . . . . . . . . 9 ((πœ‘ ∧ 𝑠 ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)) ∈ (0[,]+∞))
382, 37sselid 3940 . . . . . . . 8 ((πœ‘ ∧ 𝑠 ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)) ∈ ℝ*)
3938fmpttd 7057 . . . . . . 7 (πœ‘ β†’ (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))):(𝒫 𝐴 ∩ Fin)βŸΆβ„*)
4039frnd 6671 . . . . . 6 (πœ‘ β†’ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) βŠ† ℝ*)
41 supxrcl 13162 . . . . . 6 (ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) βŠ† ℝ* β†’ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ) ∈ ℝ*)
4240, 41syl 17 . . . . 5 (πœ‘ β†’ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ) ∈ ℝ*)
431, 42eqeltrid 2842 . . . 4 (πœ‘ β†’ 𝑆 ∈ ℝ*)
44 0ss 4354 . . . . . . . 8 βˆ… βŠ† 𝐴
45 0fin 9048 . . . . . . . 8 βˆ… ∈ Fin
46 elfpw 9231 . . . . . . . 8 (βˆ… ∈ (𝒫 𝐴 ∩ Fin) ↔ (βˆ… βŠ† 𝐴 ∧ βˆ… ∈ Fin))
4744, 45, 46mpbir2an 709 . . . . . . 7 βˆ… ∈ (𝒫 𝐴 ∩ Fin)
48 0cn 11080 . . . . . . 7 0 ∈ β„‚
49 eqid 2737 . . . . . . . 8 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))
50 reseq2 5928 . . . . . . . . . . 11 (𝑠 = βˆ… β†’ (𝐹 β†Ύ 𝑠) = (𝐹 β†Ύ βˆ…))
51 res0 5937 . . . . . . . . . . 11 (𝐹 β†Ύ βˆ…) = βˆ…
5250, 51eqtrdi 2793 . . . . . . . . . 10 (𝑠 = βˆ… β†’ (𝐹 β†Ύ 𝑠) = βˆ…)
5352oveq2d 7365 . . . . . . . . 9 (𝑠 = βˆ… β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)) = (𝐺 Ξ£g βˆ…))
5423gsum0 18473 . . . . . . . . 9 (𝐺 Ξ£g βˆ…) = 0
5553, 54eqtrdi 2793 . . . . . . . 8 (𝑠 = βˆ… β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)) = 0)
5649, 55elrnmpt1s 5908 . . . . . . 7 ((βˆ… ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ β„‚) β†’ 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))))
5747, 48, 56mp2an 690 . . . . . 6 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))
58 supxrub 13171 . . . . . 6 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) βŠ† ℝ* ∧ 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))) β†’ 0 ≀ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ))
5940, 57, 58sylancl 586 . . . . 5 (πœ‘ β†’ 0 ≀ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ))
6059, 1breqtrrdi 5145 . . . 4 (πœ‘ β†’ 0 ≀ 𝑆)
61 elxrge0 13302 . . . 4 (𝑆 ∈ (0[,]+∞) ↔ (𝑆 ∈ ℝ* ∧ 0 ≀ 𝑆))
6243, 60, 61sylanbrc 583 . . 3 (πœ‘ β†’ 𝑆 ∈ (0[,]+∞))
63 letop 22479 . . . . . 6 (ordTopβ€˜ ≀ ) ∈ Top
64 ovex 7382 . . . . . 6 (0[,]+∞) ∈ V
65 elrest 17243 . . . . . 6 (((ordTopβ€˜ ≀ ) ∈ Top ∧ (0[,]+∞) ∈ V) β†’ (𝑒 ∈ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) ↔ βˆƒπ‘£ ∈ (ordTopβ€˜ ≀ )𝑒 = (𝑣 ∩ (0[,]+∞))))
6663, 64, 65mp2an 690 . . . . 5 (𝑒 ∈ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) ↔ βˆƒπ‘£ ∈ (ordTopβ€˜ ≀ )𝑒 = (𝑣 ∩ (0[,]+∞)))
67 elinel1 4153 . . . . . . . 8 (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) β†’ 𝑆 ∈ 𝑣)
68 reex 11075 . . . . . . . . . . . . . 14 ℝ ∈ V
69 simplrl 775 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ 𝑣 ∈ (ordTopβ€˜ ≀ ))
70 elrestr 17244 . . . . . . . . . . . . . 14 (((ordTopβ€˜ ≀ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑣 ∈ (ordTopβ€˜ ≀ )) β†’ (𝑣 ∩ ℝ) ∈ ((ordTopβ€˜ ≀ ) β†Ύt ℝ))
7163, 68, 69, 70mp3an12i 1465 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ (𝑣 ∩ ℝ) ∈ ((ordTopβ€˜ ≀ ) β†Ύt ℝ))
72 eqid 2737 . . . . . . . . . . . . . 14 ((ordTopβ€˜ ≀ ) β†Ύt ℝ) = ((ordTopβ€˜ ≀ ) β†Ύt ℝ)
7372xrtgioo 24091 . . . . . . . . . . . . 13 (topGenβ€˜ran (,)) = ((ordTopβ€˜ ≀ ) β†Ύt ℝ)
7471, 73eleqtrrdi 2849 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ (𝑣 ∩ ℝ) ∈ (topGenβ€˜ran (,)))
75 simplrr 776 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ 𝑆 ∈ 𝑣)
76 simpr 485 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ 𝑆 ∈ ℝ)
7775, 76elind 4152 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ 𝑆 ∈ (𝑣 ∩ ℝ))
78 tg2 22237 . . . . . . . . . . . 12 (((𝑣 ∩ ℝ) ∈ (topGenβ€˜ran (,)) ∧ 𝑆 ∈ (𝑣 ∩ ℝ)) β†’ βˆƒπ‘’ ∈ ran (,)(𝑆 ∈ 𝑒 ∧ 𝑒 βŠ† (𝑣 ∩ ℝ)))
7974, 77, 78syl2anc 584 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ βˆƒπ‘’ ∈ ran (,)(𝑆 ∈ 𝑒 ∧ 𝑒 βŠ† (𝑣 ∩ ℝ)))
80 ioof 13292 . . . . . . . . . . . . . 14 (,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ
81 ffn 6663 . . . . . . . . . . . . . 14 ((,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ β†’ (,) Fn (ℝ* Γ— ℝ*))
82 ovelrn 7522 . . . . . . . . . . . . . 14 ((,) Fn (ℝ* Γ— ℝ*) β†’ (𝑒 ∈ ran (,) ↔ βˆƒπ‘Ÿ ∈ ℝ* βˆƒπ‘€ ∈ ℝ* 𝑒 = (π‘Ÿ(,)𝑀)))
8380, 81, 82mp2b 10 . . . . . . . . . . . . 13 (𝑒 ∈ ran (,) ↔ βˆƒπ‘Ÿ ∈ ℝ* βˆƒπ‘€ ∈ ℝ* 𝑒 = (π‘Ÿ(,)𝑀))
84 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ))
8584adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ))
86 inss1 4186 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∩ ℝ) βŠ† 𝑣
8785, 86sstrdi 3954 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (π‘Ÿ(,)𝑀) βŠ† 𝑣)
8825a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝐺 ∈ CMnd)
89 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
90 elinel2 4154 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) β†’ 𝑦 ∈ Fin)
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑦 ∈ Fin)
92 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ πœ‘)
9392, 29syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝐹:𝐴⟢(0[,]+∞))
94 elfpw 9231 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 βŠ† 𝐴 ∧ 𝑦 ∈ Fin))
9594simplbi 498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) β†’ 𝑦 βŠ† 𝐴)
9689, 95syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑦 βŠ† 𝐴)
9793, 96fssresd 6704 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐹 β†Ύ 𝑦):π‘¦βŸΆ(0[,]+∞))
9834a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 0 ∈ V)
9997, 91, 98fdmfifsupp 9248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐹 β†Ύ 𝑦) finSupp 0)
1006, 23, 88, 91, 97, 99gsumcl 19621 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (0[,]+∞))
1012, 100sselid 3940 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ℝ*)
102 simprll 777 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ π‘Ÿ ∈ ℝ*)
103102adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ π‘Ÿ ∈ ℝ*)
104 simprrr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑧 βŠ† 𝑦)
10591, 104ssfid 9144 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑧 ∈ Fin)
106104, 96sstrd 3952 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑧 βŠ† 𝐴)
10793, 106fssresd 6704 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐹 β†Ύ 𝑧):π‘§βŸΆ(0[,]+∞))
108107, 105, 98fdmfifsupp 9248 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐹 β†Ύ 𝑧) finSupp 0)
1096, 23, 88, 105, 107, 108gsumcl 19621 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ (0[,]+∞))
1102, 109sselid 3940 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ ℝ*)
111 simprlr 778 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))
112 xrge0tsms.a . . . . . . . . . . . . . . . . . . . . . . . . . 26 (πœ‘ β†’ 𝐴 ∈ 𝑉)
11392, 112syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝐴 ∈ 𝑉)
1143, 113, 93, 89, 104xrge0gsumle 24118 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ≀ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)))
115103, 110, 101, 111, 114xrltletrd 13008 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)))
11692, 43syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑆 ∈ ℝ*)
117 simprlr 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ 𝑀 ∈ ℝ*)
118117adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑀 ∈ ℝ*)
11992, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) βŠ† ℝ*)
120 ovex 7382 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ V
121 reseq2 5928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 𝑦 β†’ (𝐹 β†Ύ 𝑠) = (𝐹 β†Ύ 𝑦))
122121oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)) = (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)))
12349, 122elrnmpt1s 5908 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ V) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))))
12489, 120, 123sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))))
125 supxrub 13171 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) βŠ† ℝ* ∧ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ≀ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ))
126119, 124, 125syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ≀ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ))
127126, 1breqtrrdi 5145 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ≀ 𝑆)
128 simprrl 779 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ 𝑆 ∈ (π‘Ÿ(,)𝑀))
129 eliooord 13251 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ (π‘Ÿ(,)𝑀) β†’ (π‘Ÿ < 𝑆 ∧ 𝑆 < 𝑀))
130128, 129syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ (π‘Ÿ < 𝑆 ∧ 𝑆 < 𝑀))
131130simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ 𝑆 < 𝑀)
132131adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ 𝑆 < 𝑀)
133101, 116, 118, 127, 132xrlelttrd 13007 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) < 𝑀)
134 elioo1 13232 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) β†’ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (π‘Ÿ(,)𝑀) ↔ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ℝ* ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∧ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) < 𝑀)))
135103, 118, 134syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (π‘Ÿ(,)𝑀) ↔ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ℝ* ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∧ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) < 𝑀)))
136101, 115, 133, 135mpbir3and 1342 . . . . . . . . . . . . . . . . . . . . . 22 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (π‘Ÿ(,)𝑀))
13787, 136sseldd 3943 . . . . . . . . . . . . . . . . . . . . 21 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑣)
138137, 100elind 4152 . . . . . . . . . . . . . . . . . . . 20 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦))) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
139138anassrs 468 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
140139expr 457 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
141140ralrimiva 3141 . . . . . . . . . . . . . . . . 17 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) β†’ βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
142130simpld 495 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ π‘Ÿ < 𝑆)
143142, 1breqtrdi 5144 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ π‘Ÿ < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ))
14440ad3antrrr 728 . . . . . . . . . . . . . . . . . . . 20 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) βŠ† ℝ*)
145 supxrlub 13172 . . . . . . . . . . . . . . . . . . . 20 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) βŠ† ℝ* ∧ π‘Ÿ ∈ ℝ*) β†’ (π‘Ÿ < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ) ↔ βˆƒπ‘€ ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))π‘Ÿ < 𝑀))
146144, 102, 145syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ (π‘Ÿ < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ) ↔ βˆƒπ‘€ ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))π‘Ÿ < 𝑀))
147143, 146mpbid 231 . . . . . . . . . . . . . . . . . 18 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ βˆƒπ‘€ ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))π‘Ÿ < 𝑀)
148 ovex 7382 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ V
149148rgenw 3066 . . . . . . . . . . . . . . . . . . 19 βˆ€π‘§ ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ V
150 reseq2 5928 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑧 β†’ (𝐹 β†Ύ 𝑠) = (𝐹 β†Ύ 𝑧))
151150oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑧 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)) = (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))
152151cbvmptv 5216 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))
153 breq2 5107 . . . . . . . . . . . . . . . . . . . 20 (𝑀 = (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) β†’ (π‘Ÿ < 𝑀 ↔ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))))
154152, 153rexrnmptw 7039 . . . . . . . . . . . . . . . . . . 19 (βˆ€π‘§ ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ V β†’ (βˆƒπ‘€ ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))π‘Ÿ < 𝑀 ↔ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧))))
155149, 154ax-mp 5 . . . . . . . . . . . . . . . . . 18 (βˆƒπ‘€ ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))π‘Ÿ < 𝑀 ↔ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))
156147, 155sylib 217 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))
157141, 156reximddv 3166 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*) ∧ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
158157expr 457 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*)) β†’ ((𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
159 eleq2 2826 . . . . . . . . . . . . . . . . 17 (𝑒 = (π‘Ÿ(,)𝑀) β†’ (𝑆 ∈ 𝑒 ↔ 𝑆 ∈ (π‘Ÿ(,)𝑀)))
160 sseq1 3967 . . . . . . . . . . . . . . . . 17 (𝑒 = (π‘Ÿ(,)𝑀) β†’ (𝑒 βŠ† (𝑣 ∩ ℝ) ↔ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)))
161159, 160anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑒 = (π‘Ÿ(,)𝑀) β†’ ((𝑆 ∈ 𝑒 ∧ 𝑒 βŠ† (𝑣 ∩ ℝ)) ↔ (𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ))))
162161imbi1d 341 . . . . . . . . . . . . . . 15 (𝑒 = (π‘Ÿ(,)𝑀) β†’ (((𝑆 ∈ 𝑒 ∧ 𝑒 βŠ† (𝑣 ∩ ℝ)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))) ↔ ((𝑆 ∈ (π‘Ÿ(,)𝑀) ∧ (π‘Ÿ(,)𝑀) βŠ† (𝑣 ∩ ℝ)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
163158, 162syl5ibrcom 246 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (π‘Ÿ ∈ ℝ* ∧ 𝑀 ∈ ℝ*)) β†’ (𝑒 = (π‘Ÿ(,)𝑀) β†’ ((𝑆 ∈ 𝑒 ∧ 𝑒 βŠ† (𝑣 ∩ ℝ)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
164163rexlimdvva 3203 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ (βˆƒπ‘Ÿ ∈ ℝ* βˆƒπ‘€ ∈ ℝ* 𝑒 = (π‘Ÿ(,)𝑀) β†’ ((𝑆 ∈ 𝑒 ∧ 𝑒 βŠ† (𝑣 ∩ ℝ)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
16583, 164biimtrid 241 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ (𝑒 ∈ ran (,) β†’ ((𝑆 ∈ 𝑒 ∧ 𝑒 βŠ† (𝑣 ∩ ℝ)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
166165rexlimdv 3148 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ (βˆƒπ‘’ ∈ ran (,)(𝑆 ∈ 𝑒 ∧ 𝑒 βŠ† (𝑣 ∩ ℝ)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
16779, 166mpd 15 . . . . . . . . . 10 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 ∈ ℝ) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
168 simplrl 775 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) β†’ 𝑣 ∈ (ordTopβ€˜ ≀ ))
169 simpr 485 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) β†’ 𝑆 = +∞)
170 simplrr 776 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) β†’ 𝑆 ∈ 𝑣)
171169, 170eqeltrrd 2839 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) β†’ +∞ ∈ 𝑣)
172 pnfnei 22493 . . . . . . . . . . . 12 ((𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ +∞ ∈ 𝑣) β†’ βˆƒπ‘Ÿ ∈ ℝ (π‘Ÿ(,]+∞) βŠ† 𝑣)
173168, 171, 172syl2anc 584 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) β†’ βˆƒπ‘Ÿ ∈ ℝ (π‘Ÿ(,]+∞) βŠ† 𝑣)
174 simprr 771 . . . . . . . . . . . . . . . . 17 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ (π‘Ÿ(,]+∞) βŠ† 𝑣)
175174ad2antrr 724 . . . . . . . . . . . . . . . 16 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (π‘Ÿ(,]+∞) βŠ† 𝑣)
17625a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝐺 ∈ CMnd)
17790ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝑦 ∈ Fin)
178 simp-5l 783 . . . . . . . . . . . . . . . . . . . . 21 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ πœ‘)
179178, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝐹:𝐴⟢(0[,]+∞))
18095ad2antrl 726 . . . . . . . . . . . . . . . . . . . 20 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝑦 βŠ† 𝐴)
181179, 180fssresd 6704 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐹 β†Ύ 𝑦):π‘¦βŸΆ(0[,]+∞))
18234a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 0 ∈ V)
183181, 177, 182fdmfifsupp 9248 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐹 β†Ύ 𝑦) finSupp 0)
1846, 23, 176, 177, 181, 183gsumcl 19621 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (0[,]+∞))
1852, 184sselid 3940 . . . . . . . . . . . . . . . . 17 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ℝ*)
186 rexr 11134 . . . . . . . . . . . . . . . . . . . 20 (π‘Ÿ ∈ ℝ β†’ π‘Ÿ ∈ ℝ*)
187186ad2antrl 726 . . . . . . . . . . . . . . . . . . 19 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ π‘Ÿ ∈ ℝ*)
188187ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ π‘Ÿ ∈ ℝ*)
189 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝑧 βŠ† 𝑦)
190177, 189ssfid 9144 . . . . . . . . . . . . . . . . . . . 20 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝑧 ∈ Fin)
191189, 180sstrd 3952 . . . . . . . . . . . . . . . . . . . . 21 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝑧 βŠ† 𝐴)
192179, 191fssresd 6704 . . . . . . . . . . . . . . . . . . . 20 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐹 β†Ύ 𝑧):π‘§βŸΆ(0[,]+∞))
193192, 190, 182fdmfifsupp 9248 . . . . . . . . . . . . . . . . . . . 20 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐹 β†Ύ 𝑧) finSupp 0)
1946, 23, 176, 190, 192, 193gsumcl 19621 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ (0[,]+∞))
1952, 194sselid 3940 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ∈ ℝ*)
196 simplrr 776 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))
197178, 112syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝐴 ∈ 𝑉)
198 simprl 769 . . . . . . . . . . . . . . . . . . 19 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
1993, 197, 179, 198, 189xrge0gsumle 24118 . . . . . . . . . . . . . . . . . 18 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)) ≀ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)))
200188, 195, 185, 196, 199xrltletrd 13008 . . . . . . . . . . . . . . . . 17 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)))
201 pnfge 12979 . . . . . . . . . . . . . . . . . 18 ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ℝ* β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ≀ +∞)
202185, 201syl 17 . . . . . . . . . . . . . . . . 17 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ≀ +∞)
203 pnfxr 11142 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
204 elioc1 13234 . . . . . . . . . . . . . . . . . 18 ((π‘Ÿ ∈ ℝ* ∧ +∞ ∈ ℝ*) β†’ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (π‘Ÿ(,]+∞) ↔ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ℝ* ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∧ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ≀ +∞)))
205188, 203, 204sylancl 586 . . . . . . . . . . . . . . . . 17 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (π‘Ÿ(,]+∞) ↔ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ ℝ* ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∧ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ≀ +∞)))
206185, 200, 202, 205mpbir3and 1342 . . . . . . . . . . . . . . . 16 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (π‘Ÿ(,]+∞))
207175, 206sseldd 3943 . . . . . . . . . . . . . . 15 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑣)
208207, 184elind 4152 . . . . . . . . . . . . . 14 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧 βŠ† 𝑦)) β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
209208expr 457 . . . . . . . . . . . . 13 ((((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) β†’ (𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
210209ralrimiva 3141 . . . . . . . . . . . 12 (((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))) β†’ βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
211 ltpnf 12969 . . . . . . . . . . . . . . . . 17 (π‘Ÿ ∈ ℝ β†’ π‘Ÿ < +∞)
212211ad2antrl 726 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ π‘Ÿ < +∞)
213 simplr 767 . . . . . . . . . . . . . . . 16 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ 𝑆 = +∞)
214212, 213breqtrrd 5131 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ π‘Ÿ < 𝑆)
215214, 1breqtrdi 5144 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ π‘Ÿ < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ))
21640ad3antrrr 728 . . . . . . . . . . . . . . 15 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))) βŠ† ℝ*)
217216, 187, 145syl2anc 584 . . . . . . . . . . . . . 14 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ (π‘Ÿ < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠))), ℝ*, < ) ↔ βˆƒπ‘€ ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))π‘Ÿ < 𝑀))
218215, 217mpbid 231 . . . . . . . . . . . . 13 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ βˆƒπ‘€ ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Ξ£g (𝐹 β†Ύ 𝑠)))π‘Ÿ < 𝑀)
219218, 155sylib 217 . . . . . . . . . . . 12 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)π‘Ÿ < (𝐺 Ξ£g (𝐹 β†Ύ 𝑧)))
220210, 219reximddv 3166 . . . . . . . . . . 11 ((((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) ∧ (π‘Ÿ ∈ ℝ ∧ (π‘Ÿ(,]+∞) βŠ† 𝑣)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
221173, 220rexlimddv 3156 . . . . . . . . . 10 (((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) ∧ 𝑆 = +∞) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
222 ge0nemnf 13020 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ 0 ≀ 𝑆) β†’ 𝑆 β‰  -∞)
22343, 60, 222syl2anc 584 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑆 β‰  -∞)
22443, 223jca 512 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑆 ∈ ℝ* ∧ 𝑆 β‰  -∞))
225224adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) β†’ (𝑆 ∈ ℝ* ∧ 𝑆 β‰  -∞))
226 xrnemnf 12966 . . . . . . . . . . 11 ((𝑆 ∈ ℝ* ∧ 𝑆 β‰  -∞) ↔ (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
227225, 226sylib 217 . . . . . . . . . 10 ((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) β†’ (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
228167, 221, 227mpjaodan 957 . . . . . . . . 9 ((πœ‘ ∧ (𝑣 ∈ (ordTopβ€˜ ≀ ) ∧ 𝑆 ∈ 𝑣)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
229228expr 457 . . . . . . . 8 ((πœ‘ ∧ 𝑣 ∈ (ordTopβ€˜ ≀ )) β†’ (𝑆 ∈ 𝑣 β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
23067, 229syl5 34 . . . . . . 7 ((πœ‘ ∧ 𝑣 ∈ (ordTopβ€˜ ≀ )) β†’ (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
231 eleq2 2826 . . . . . . . 8 (𝑒 = (𝑣 ∩ (0[,]+∞)) β†’ (𝑆 ∈ 𝑒 ↔ 𝑆 ∈ (𝑣 ∩ (0[,]+∞))))
232 eleq2 2826 . . . . . . . . . 10 (𝑒 = (𝑣 ∩ (0[,]+∞)) β†’ ((𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒 ↔ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
233232imbi2d 340 . . . . . . . . 9 (𝑒 = (𝑣 ∩ (0[,]+∞)) β†’ ((𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒) ↔ (𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
234233rexralbidv 3212 . . . . . . . 8 (𝑒 = (𝑣 ∩ (0[,]+∞)) β†’ (βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒) ↔ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
235231, 234imbi12d 344 . . . . . . 7 (𝑒 = (𝑣 ∩ (0[,]+∞)) β†’ ((𝑆 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒)) ↔ (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
236230, 235syl5ibrcom 246 . . . . . 6 ((πœ‘ ∧ 𝑣 ∈ (ordTopβ€˜ ≀ )) β†’ (𝑒 = (𝑣 ∩ (0[,]+∞)) β†’ (𝑆 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒))))
237236rexlimdva 3150 . . . . 5 (πœ‘ β†’ (βˆƒπ‘£ ∈ (ordTopβ€˜ ≀ )𝑒 = (𝑣 ∩ (0[,]+∞)) β†’ (𝑆 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒))))
23866, 237biimtrid 241 . . . 4 (πœ‘ β†’ (𝑒 ∈ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) β†’ (𝑆 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒))))
239238ralrimiv 3140 . . 3 (πœ‘ β†’ βˆ€π‘’ ∈ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞))(𝑆 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒)))
240 xrstset 20739 . . . . . . 7 (ordTopβ€˜ ≀ ) = (TopSetβ€˜β„*𝑠)
2413, 240resstset 17180 . . . . . 6 ((0[,]+∞) ∈ V β†’ (ordTopβ€˜ ≀ ) = (TopSetβ€˜πΊ))
24264, 241ax-mp 5 . . . . 5 (ordTopβ€˜ ≀ ) = (TopSetβ€˜πΊ)
2436, 242topnval 17250 . . . 4 ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) = (TopOpenβ€˜πΊ)
244 eqid 2737 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
24525a1i 11 . . . 4 (πœ‘ β†’ 𝐺 ∈ CMnd)
246 xrstps 22482 . . . . . . 7 ℝ*𝑠 ∈ TopSp
247 resstps 22460 . . . . . . 7 ((ℝ*𝑠 ∈ TopSp ∧ (0[,]+∞) ∈ V) β†’ (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ TopSp)
248246, 64, 247mp2an 690 . . . . . 6 (ℝ*𝑠 β†Ύs (0[,]+∞)) ∈ TopSp
2493, 248eqeltri 2834 . . . . 5 𝐺 ∈ TopSp
250249a1i 11 . . . 4 (πœ‘ β†’ 𝐺 ∈ TopSp)
2516, 243, 244, 245, 250, 112, 29eltsms 23406 . . 3 (πœ‘ β†’ (𝑆 ∈ (𝐺 tsums 𝐹) ↔ (𝑆 ∈ (0[,]+∞) ∧ βˆ€π‘’ ∈ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞))(𝑆 ∈ 𝑒 β†’ βˆƒπ‘§ ∈ (𝒫 𝐴 ∩ Fin)βˆ€π‘¦ ∈ (𝒫 𝐴 ∩ Fin)(𝑧 βŠ† 𝑦 β†’ (𝐺 Ξ£g (𝐹 β†Ύ 𝑦)) ∈ 𝑒)))))
25262, 239, 251mpbir2and 711 . 2 (πœ‘ β†’ 𝑆 ∈ (𝐺 tsums 𝐹))
253 letsr 18416 . . . . 5 ≀ ∈ TosetRel
254 ordthaus 22657 . . . . 5 ( ≀ ∈ TosetRel β†’ (ordTopβ€˜ ≀ ) ∈ Haus)
255253, 254mp1i 13 . . . 4 (πœ‘ β†’ (ordTopβ€˜ ≀ ) ∈ Haus)
256 resthaus 22641 . . . 4 (((ordTopβ€˜ ≀ ) ∈ Haus ∧ (0[,]+∞) ∈ V) β†’ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) ∈ Haus)
257255, 64, 256sylancl 586 . . 3 (πœ‘ β†’ ((ordTopβ€˜ ≀ ) β†Ύt (0[,]+∞)) ∈ Haus)
2586, 245, 250, 112, 29, 243, 257haustsms2 23410 . 2 (πœ‘ β†’ (𝑆 ∈ (𝐺 tsums 𝐹) β†’ (𝐺 tsums 𝐹) = {𝑆}))
259252, 258mpd 15 1 (πœ‘ β†’ (𝐺 tsums 𝐹) = {𝑆})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3443   βˆ– cdif 3905   ∩ cin 3907   βŠ† wss 3908  βˆ…c0 4280  π’« cpw 4558  {csn 4584   class class class wbr 5103   ↦ cmpt 5186   Γ— cxp 5628  ran crn 5631   β†Ύ cres 5632   Fn wfn 6486  βŸΆwf 6487  β€˜cfv 6491  (class class class)co 7349  Fincfn 8816  supcsup 9309  β„‚cc 10982  β„cr 10983  0cc0 10984  +∞cpnf 11119  -∞cmnf 11120  β„*cxr 11121   < clt 11122   ≀ cle 11123  (,)cioo 13192  (,]cioc 13193  [,]cicc 13195  Basecbs 17017   β†Ύs cress 17046  TopSetcts 17073   β†Ύt crest 17236  topGenctg 17253  0gc0g 17255   Ξ£g cgsu 17256  ordTopcordt 17315  β„*𝑠cxrs 17316   TosetRel ctsr 18388  SubMndcsubmnd 18534  CMndccmn 19491  Topctop 22164  TopSpctps 22203  Hauscha 22581   tsums ctsu 23399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-se 5586  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-isom 6500  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7607  df-om 7793  df-1st 7911  df-2nd 7912  df-supp 8060  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-er 8581  df-map 8700  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-fsupp 9239  df-fi 9280  df-sup 9311  df-inf 9312  df-oi 9379  df-card 9808  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-3 12150  df-4 12151  df-5 12152  df-6 12153  df-7 12154  df-8 12155  df-9 12156  df-n0 12347  df-z 12433  df-dec 12551  df-uz 12696  df-q 12802  df-xadd 12962  df-ioo 13196  df-ioc 13197  df-ico 13198  df-icc 13199  df-fz 13353  df-fzo 13496  df-seq 13835  df-hash 14158  df-struct 16953  df-sets 16970  df-slot 16988  df-ndx 17000  df-base 17018  df-ress 17047  df-plusg 17080  df-mulr 17081  df-tset 17086  df-ple 17087  df-ds 17089  df-rest 17238  df-topn 17239  df-0g 17257  df-gsum 17258  df-topgen 17259  df-ordt 17317  df-xrs 17318  df-mre 17400  df-mrc 17401  df-acs 17403  df-ps 18389  df-tsr 18390  df-mgm 18431  df-sgrp 18480  df-mnd 18491  df-submnd 18536  df-cntz 19029  df-cmn 19493  df-fbas 20716  df-fg 20717  df-top 22165  df-topon 22182  df-topsp 22204  df-bases 22218  df-ntr 22293  df-nei 22371  df-cn 22500  df-haus 22588  df-fil 23119  df-fm 23211  df-flim 23212  df-flf 23213  df-tsms 23400
This theorem is referenced by:  xrge0tsms2  24120  sge0tsms  44374
  Copyright terms: Public domain W3C validator