Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0tsmsd Structured version   Visualization version   GIF version

Theorem xrge0tsmsd 30232
Description: Any finite or infinite sum in the nonnegative extended reals is uniquely convergent to the supremum of all finite sums. (Contributed by Mario Carneiro, 13-Sep-2015.) (Revised by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
xrge0tsmsd.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0tsmsd.a (𝜑𝐴𝑉)
xrge0tsmsd.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0tsmsd.s (𝜑𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
Assertion
Ref Expression
xrge0tsmsd (𝜑 → (𝐺 tsums 𝐹) = {𝑆})
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝜑,𝑠   𝐺,𝑠
Allowed substitution hints:   𝑆(𝑠)   𝑉(𝑠)

Proof of Theorem xrge0tsmsd
Dummy variables 𝑟 𝑢 𝑣 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0tsmsd.s . . . . 5 (𝜑𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
2 iccssxr 12458 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3 xrge0tsmsd.g . . . . . . . . . . . 12 𝐺 = (ℝ*𝑠s (0[,]+∞))
4 xrsbas 20035 . . . . . . . . . . . 12 * = (Base‘ℝ*𝑠)
53, 4ressbas2 16203 . . . . . . . . . . 11 ((0[,]+∞) ⊆ ℝ* → (0[,]+∞) = (Base‘𝐺))
62, 5ax-mp 5 . . . . . . . . . 10 (0[,]+∞) = (Base‘𝐺)
7 eqid 2765 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
8 xrge0cmn 20061 . . . . . . . . . . . 12 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
93, 8eqeltri 2840 . . . . . . . . . . 11 𝐺 ∈ CMnd
109a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐺 ∈ CMnd)
11 simpr 477 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ (𝒫 𝐴 ∩ Fin))
12 xrge0tsmsd.f . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶(0[,]+∞))
13 elfpw 8475 . . . . . . . . . . . 12 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑠𝐴𝑠 ∈ Fin))
1413simplbi 491 . . . . . . . . . . 11 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠𝐴)
15 fssres 6252 . . . . . . . . . . 11 ((𝐹:𝐴⟶(0[,]+∞) ∧ 𝑠𝐴) → (𝐹𝑠):𝑠⟶(0[,]+∞))
1612, 14, 15syl2an 589 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠):𝑠⟶(0[,]+∞))
17 elinel2 3962 . . . . . . . . . . . 12 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) → 𝑠 ∈ Fin)
1817adantl 473 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑠 ∈ Fin)
19 fvexd 6390 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐺) ∈ V)
2016, 18, 19fdmfifsupp 8492 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑠) finSupp (0g𝐺))
216, 7, 10, 11, 16, 20gsumcl 18582 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ (0[,]+∞))
222, 21sseldi 3759 . . . . . . . 8 ((𝜑𝑠 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑠)) ∈ ℝ*)
2322fmpttd 6575 . . . . . . 7 (𝜑 → (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))):(𝒫 𝐴 ∩ Fin)⟶ℝ*)
2423frnd 6230 . . . . . 6 (𝜑 → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
25 supxrcl 12347 . . . . . 6 (ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* → sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ∈ ℝ*)
2624, 25syl 17 . . . . 5 (𝜑 → sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ∈ ℝ*)
271, 26eqeltrd 2844 . . . 4 (𝜑𝑆 ∈ ℝ*)
28 0ss 4134 . . . . . . . 8 ∅ ⊆ 𝐴
29 0fin 8395 . . . . . . . 8 ∅ ∈ Fin
30 elfpw 8475 . . . . . . . 8 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ⊆ 𝐴 ∧ ∅ ∈ Fin))
3128, 29, 30mpbir2an 702 . . . . . . 7 ∅ ∈ (𝒫 𝐴 ∩ Fin)
32 0cn 10285 . . . . . . 7 0 ∈ ℂ
33 eqid 2765 . . . . . . . 8 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
34 reseq2 5560 . . . . . . . . . . 11 (𝑠 = ∅ → (𝐹𝑠) = (𝐹 ↾ ∅))
35 res0 5569 . . . . . . . . . . 11 (𝐹 ↾ ∅) = ∅
3634, 35syl6eq 2815 . . . . . . . . . 10 (𝑠 = ∅ → (𝐹𝑠) = ∅)
3736oveq2d 6858 . . . . . . . . 9 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg ∅))
38 eqid 2765 . . . . . . . . . . . 12 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
3938xrge0subm 20060 . . . . . . . . . . 11 (0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
40 xrex 12025 . . . . . . . . . . . . . . 15 * ∈ V
41 difexg 4969 . . . . . . . . . . . . . . 15 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
4240, 41ax-mp 5 . . . . . . . . . . . . . 14 (ℝ* ∖ {-∞}) ∈ V
43 simpl 474 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ*)
44 ge0nemnf 12206 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → 𝑥 ≠ -∞)
4543, 44jca 507 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥) → (𝑥 ∈ ℝ*𝑥 ≠ -∞))
46 elxrge0 12485 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0[,]+∞) ↔ (𝑥 ∈ ℝ* ∧ 0 ≤ 𝑥))
47 eldifsn 4472 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
4845, 46, 473imtr4i 283 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]+∞) → 𝑥 ∈ (ℝ* ∖ {-∞}))
4948ssriv 3765 . . . . . . . . . . . . . 14 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
50 ressabs 16212 . . . . . . . . . . . . . 14 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ⊆ (ℝ* ∖ {-∞})) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞)))
5142, 49, 50mp2an 683 . . . . . . . . . . . . 13 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
523, 51eqtr4i 2790 . . . . . . . . . . . 12 𝐺 = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
5338xrs10 20058 . . . . . . . . . . . 12 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
5452, 53subm0 17622 . . . . . . . . . . 11 ((0[,]+∞) ∈ (SubMnd‘(ℝ*𝑠s (ℝ* ∖ {-∞}))) → 0 = (0g𝐺))
5539, 54ax-mp 5 . . . . . . . . . 10 0 = (0g𝐺)
5655gsum0 17544 . . . . . . . . 9 (𝐺 Σg ∅) = 0
5737, 56syl6eq 2815 . . . . . . . 8 (𝑠 = ∅ → (𝐺 Σg (𝐹𝑠)) = 0)
5833, 57elrnmpt1s 5542 . . . . . . 7 ((∅ ∈ (𝒫 𝐴 ∩ Fin) ∧ 0 ∈ ℂ) → 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
5931, 32, 58mp2an 683 . . . . . 6 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))
60 supxrub 12356 . . . . . 6 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* ∧ 0 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))) → 0 ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
6124, 59, 60sylancl 580 . . . . 5 (𝜑 → 0 ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
6261, 1breqtrrd 4837 . . . 4 (𝜑 → 0 ≤ 𝑆)
63 elxrge0 12485 . . . 4 (𝑆 ∈ (0[,]+∞) ↔ (𝑆 ∈ ℝ* ∧ 0 ≤ 𝑆))
6427, 62, 63sylanbrc 578 . . 3 (𝜑𝑆 ∈ (0[,]+∞))
65 letop 21290 . . . . . 6 (ordTop‘ ≤ ) ∈ Top
66 ovex 6874 . . . . . 6 (0[,]+∞) ∈ V
67 elrest 16354 . . . . . 6 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V) → (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↔ ∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞))))
6865, 66, 67mp2an 683 . . . . 5 (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ↔ ∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞)))
69 elinel1 3961 . . . . . . . 8 (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → 𝑆𝑣)
70 simplrl 795 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑣 ∈ (ordTop‘ ≤ ))
71 reex 10280 . . . . . . . . . . . . . . 15 ℝ ∈ V
72 elrestr 16355 . . . . . . . . . . . . . . 15 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑣 ∈ (ordTop‘ ≤ )) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
7365, 71, 72mp3an12 1575 . . . . . . . . . . . . . 14 (𝑣 ∈ (ordTop‘ ≤ ) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
7470, 73syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑣 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
75 eqid 2765 . . . . . . . . . . . . . 14 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
7675xrtgioo 22888 . . . . . . . . . . . . 13 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
7774, 76syl6eleqr 2855 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑣 ∩ ℝ) ∈ (topGen‘ran (,)))
78 simplrr 796 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆𝑣)
79 simpr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ ℝ)
8078, 79elind 3960 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → 𝑆 ∈ (𝑣 ∩ ℝ))
81 tg2 21049 . . . . . . . . . . . 12 (((𝑣 ∩ ℝ) ∈ (topGen‘ran (,)) ∧ 𝑆 ∈ (𝑣 ∩ ℝ)) → ∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)))
8277, 80, 81syl2anc 579 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → ∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)))
83 ioof 12474 . . . . . . . . . . . . . 14 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
84 ffn 6223 . . . . . . . . . . . . . 14 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
85 ovelrn 7008 . . . . . . . . . . . . . 14 ((,) Fn (ℝ* × ℝ*) → (𝑢 ∈ ran (,) ↔ ∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤)))
8683, 84, 85mp2b 10 . . . . . . . . . . . . 13 (𝑢 ∈ ran (,) ↔ ∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤))
87 simprrr 800 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))
8887adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))
89 inss1 3992 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∩ ℝ) ⊆ 𝑣
9088, 89syl6ss 3773 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝑟(,)𝑤) ⊆ 𝑣)
919a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐺 ∈ CMnd)
92 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
93 elinel2 3962 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
9492, 93syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦 ∈ Fin)
95 simp-4l 801 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝜑)
9695, 12syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐹:𝐴⟶(0[,]+∞))
97 elfpw 8475 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
9897simplbi 491 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
9992, 98syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑦𝐴)
10096, 99fssresd 6253 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑦):𝑦⟶(0[,]+∞))
10112ffund 6227 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → Fun 𝐹)
102101ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → Fun 𝐹)
103102ad2antrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → Fun 𝐹)
104 c0ex 10287 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ V
105104a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 0 ∈ V)
106103, 94, 105resfifsupp 8510 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑦) finSupp 0)
1076, 55, 91, 94, 100, 106gsumcl 18582 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (0[,]+∞))
1082, 107sseldi 3759 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ ℝ*)
109 simprll 797 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 ∈ ℝ*)
110109adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 ∈ ℝ*)
111 simprll 797 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧 ∈ (𝒫 𝐴 ∩ Fin))
112 simprrr 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧𝑦)
113112, 99sstrd 3771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧𝐴)
11496, 113fssresd 6253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑧):𝑧⟶(0[,]+∞))
115 ssfi 8387 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 ∈ Fin ∧ 𝑧𝑦) → 𝑧 ∈ Fin)
11694, 112, 115syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑧 ∈ Fin)
117 fvexd 6390 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (0g𝐺) ∈ V)
118114, 116, 117fdmfifsupp 8492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐹𝑧) finSupp (0g𝐺))
1196, 7, 91, 111, 114, 118gsumcl 18582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ∈ (0[,]+∞))
1202, 119sseldi 3759 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ∈ ℝ*)
121 simprlr 798 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 < (𝐺 Σg (𝐹𝑧)))
122 xrge0tsmsd.a . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐴𝑉)
12395, 122syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝐴𝑉)
1243, 123, 96, 92, 112xrge0gsumle 22915 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑧)) ≤ (𝐺 Σg (𝐹𝑦)))
125110, 120, 108, 121, 124xrltletrd 12194 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑟 < (𝐺 Σg (𝐹𝑦)))
12695, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 ∈ ℝ*)
127 simprlr 798 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑤 ∈ ℝ*)
128127adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑤 ∈ ℝ*)
12995, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
130 ovex 6874 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐺 Σg (𝐹𝑦)) ∈ V
131 reseq2 5560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 𝑦 → (𝐹𝑠) = (𝐹𝑦))
132131oveq2d 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = 𝑦 → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg (𝐹𝑦)))
13333, 132elrnmpt1s 5542 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝐺 Σg (𝐹𝑦)) ∈ V) → (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
13492, 130, 133sylancl 580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))))
135 supxrub 12356 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ* ∧ (𝐺 Σg (𝐹𝑦)) ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))) → (𝐺 Σg (𝐹𝑦)) ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
136129, 134, 135syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ≤ sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
13795, 1syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
138136, 137breqtrrd 4837 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ≤ 𝑆)
139 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 ∈ (𝑟(,)𝑤))
140 eliooord 12435 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑆 ∈ (𝑟(,)𝑤) → (𝑟 < 𝑆𝑆 < 𝑤))
141139, 140syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟 < 𝑆𝑆 < 𝑤))
142141simprd 489 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 < 𝑤)
143142adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → 𝑆 < 𝑤)
144108, 126, 128, 138, 143xrlelttrd 12193 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) < 𝑤)
145 elioo1 12417 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) < 𝑤)))
146110, 128, 145syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) < 𝑤)))
147108, 125, 144, 146mpbir3and 1442 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,)𝑤))
14890, 147sseldd 3762 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ 𝑣)
149148, 107elind 3960 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ ((𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦))) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
150149anassrs 459 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
151150expr 448 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
152151ralrimiva 3113 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
153141simpld 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 < 𝑆)
1541ad3antrrr 721 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
155153, 154breqtrd 4835 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → 𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
15624ad3antrrr 721 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
157 supxrlub 12357 . . . . . . . . . . . . . . . . . . . 20 ((ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*𝑟 ∈ ℝ*) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
158156, 109, 157syl2anc 579 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
159155, 158mpbid 223 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤)
160 ovex 6874 . . . . . . . . . . . . . . . . . . . 20 (𝐺 Σg (𝐹𝑧)) ∈ V
161160rgenw 3071 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Σg (𝐹𝑧)) ∈ V
162 reseq2 5560 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑧 → (𝐹𝑠) = (𝐹𝑧))
163162oveq2d 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑧 → (𝐺 Σg (𝐹𝑠)) = (𝐺 Σg (𝐹𝑧)))
164163cbvmptv 4909 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) = (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑧)))
165 breq2 4813 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐺 Σg (𝐹𝑧)) → (𝑟 < 𝑤𝑟 < (𝐺 Σg (𝐹𝑧))))
166164, 165rexrnmpt 6559 . . . . . . . . . . . . . . . . . . 19 (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝐺 Σg (𝐹𝑧)) ∈ V → (∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧))))
167161, 166ax-mp 5 . . . . . . . . . . . . . . . . . 18 (∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
168159, 167sylib 209 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
169152, 168reximddv 3164 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ ((𝑟 ∈ ℝ*𝑤 ∈ ℝ*) ∧ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
170169expr 448 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (𝑟 ∈ ℝ*𝑤 ∈ ℝ*)) → ((𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
171 eleq2 2833 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑟(,)𝑤) → (𝑆𝑢𝑆 ∈ (𝑟(,)𝑤)))
172 sseq1 3786 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑟(,)𝑤) → (𝑢 ⊆ (𝑣 ∩ ℝ) ↔ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)))
173171, 172anbi12d 624 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) ↔ (𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ))))
174173imbi1d 332 . . . . . . . . . . . . . . 15 (𝑢 = (𝑟(,)𝑤) → (((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))) ↔ ((𝑆 ∈ (𝑟(,)𝑤) ∧ (𝑟(,)𝑤) ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
175170, 174syl5ibrcom 238 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) ∧ (𝑟 ∈ ℝ*𝑤 ∈ ℝ*)) → (𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
176175rexlimdvva 3185 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (∃𝑟 ∈ ℝ*𝑤 ∈ ℝ* 𝑢 = (𝑟(,)𝑤) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
17786, 176syl5bi 233 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (𝑢 ∈ ran (,) → ((𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
178177rexlimdv 3177 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → (∃𝑢 ∈ ran (,)(𝑆𝑢𝑢 ⊆ (𝑣 ∩ ℝ)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
17982, 178mpd 15 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 ∈ ℝ) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
180 simplrl 795 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑣 ∈ (ordTop‘ ≤ ))
181 simpr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑆 = +∞)
182 simplrr 796 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → 𝑆𝑣)
183181, 182eqeltrrd 2845 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → +∞ ∈ 𝑣)
184 pnfnei 21304 . . . . . . . . . . . 12 ((𝑣 ∈ (ordTop‘ ≤ ) ∧ +∞ ∈ 𝑣) → ∃𝑟 ∈ ℝ (𝑟(,]+∞) ⊆ 𝑣)
185180, 183, 184syl2anc 579 . . . . . . . . . . 11 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → ∃𝑟 ∈ ℝ (𝑟(,]+∞) ⊆ 𝑣)
186 simprr 789 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → (𝑟(,]+∞) ⊆ 𝑣)
187186ad2antrr 717 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝑟(,]+∞) ⊆ 𝑣)
1889a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐺 ∈ CMnd)
189 simprl 787 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
190 simp-5l 805 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝜑)
191190, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐹:𝐴⟶(0[,]+∞))
19298ad2antrl 719 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦𝐴)
193191, 192fssresd 6253 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑦):𝑦⟶(0[,]+∞))
19493ad2antrl 719 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑦 ∈ Fin)
195 fvexd 6390 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (0g𝐺) ∈ V)
196193, 194, 195fdmfifsupp 8492 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑦) finSupp (0g𝐺))
1976, 7, 188, 189, 193, 196gsumcl 18582 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (0[,]+∞))
1982, 197sseldi 3759 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ ℝ*)
199 rexr 10339 . . . . . . . . . . . . . . . . . . . 20 (𝑟 ∈ ℝ → 𝑟 ∈ ℝ*)
200199ad2antrl 719 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 ∈ ℝ*)
201200ad2antrr 717 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 ∈ ℝ*)
202 simplrl 795 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧 ∈ (𝒫 𝐴 ∩ Fin))
203 simprr 789 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧𝑦)
204203, 192sstrd 3771 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧𝐴)
205191, 204fssresd 6253 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑧):𝑧⟶(0[,]+∞))
206194, 203, 115syl2anc 579 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑧 ∈ Fin)
207205, 206, 195fdmfifsupp 8492 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐹𝑧) finSupp (0g𝐺))
2086, 7, 188, 202, 205, 207gsumcl 18582 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ∈ (0[,]+∞))
2092, 208sseldi 3759 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ∈ ℝ*)
210 simplrr 796 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 < (𝐺 Σg (𝐹𝑧)))
211190, 122syl 17 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝐴𝑉)
2123, 211, 191, 189, 203xrge0gsumle 22915 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑧)) ≤ (𝐺 Σg (𝐹𝑦)))
213201, 209, 198, 210, 212xrltletrd 12194 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → 𝑟 < (𝐺 Σg (𝐹𝑦)))
214 pnfge 12164 . . . . . . . . . . . . . . . . . 18 ((𝐺 Σg (𝐹𝑦)) ∈ ℝ* → (𝐺 Σg (𝐹𝑦)) ≤ +∞)
215198, 214syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ≤ +∞)
216 pnfxr 10346 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
217 elioc1 12419 . . . . . . . . . . . . . . . . . 18 ((𝑟 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) ≤ +∞)))
218201, 216, 217sylancl 580 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → ((𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞) ↔ ((𝐺 Σg (𝐹𝑦)) ∈ ℝ*𝑟 < (𝐺 Σg (𝐹𝑦)) ∧ (𝐺 Σg (𝐹𝑦)) ≤ +∞)))
219198, 213, 215, 218mpbir3and 1442 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑟(,]+∞))
220187, 219sseldd 3762 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ 𝑣)
221220, 197elind 3960 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑧𝑦)) → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))
222221expr 448 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
223222ralrimiva 3113 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) ∧ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑟 < (𝐺 Σg (𝐹𝑧)))) → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
224 ltpnf 12154 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ → 𝑟 < +∞)
225224ad2antrl 719 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < +∞)
226 simplr 785 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑆 = +∞)
227225, 226breqtrrd 4837 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < 𝑆)
2281ad3antrrr 721 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑆 = sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
229227, 228breqtrd 4835 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → 𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ))
23024ad3antrrr 721 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))) ⊆ ℝ*)
231230, 200, 157syl2anc 579 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → (𝑟 < sup(ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠))), ℝ*, < ) ↔ ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤))
232229, 231mpbid 223 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑤 ∈ ran (𝑠 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝐺 Σg (𝐹𝑠)))𝑟 < 𝑤)
233232, 167sylib 209 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝑟 < (𝐺 Σg (𝐹𝑧)))
234223, 233reximddv 3164 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) ∧ (𝑟 ∈ ℝ ∧ (𝑟(,]+∞) ⊆ 𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
235185, 234rexlimddv 3182 . . . . . . . . . 10 (((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) ∧ 𝑆 = +∞) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
236 ge0nemnf 12206 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ* ∧ 0 ≤ 𝑆) → 𝑆 ≠ -∞)
23727, 62, 236syl2anc 579 . . . . . . . . . . . . 13 (𝜑𝑆 ≠ -∞)
23827, 237jca 507 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∈ ℝ*𝑆 ≠ -∞))
239238adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → (𝑆 ∈ ℝ*𝑆 ≠ -∞))
240 xrnemnf 12151 . . . . . . . . . . 11 ((𝑆 ∈ ℝ*𝑆 ≠ -∞) ↔ (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
241239, 240sylib 209 . . . . . . . . . 10 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → (𝑆 ∈ ℝ ∨ 𝑆 = +∞))
242179, 235, 241mpjaodan 981 . . . . . . . . 9 ((𝜑 ∧ (𝑣 ∈ (ordTop‘ ≤ ) ∧ 𝑆𝑣)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
243242expr 448 . . . . . . . 8 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑆𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
24469, 243syl5 34 . . . . . . 7 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
245 eleq2 2833 . . . . . . . 8 (𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢𝑆 ∈ (𝑣 ∩ (0[,]+∞))))
246 eleq2 2833 . . . . . . . . . 10 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))
247246imbi2d 331 . . . . . . . . 9 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
248247rexralbidv 3205 . . . . . . . 8 (𝑢 = (𝑣 ∩ (0[,]+∞)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞)))))
249245, 248imbi12d 335 . . . . . . 7 (𝑢 = (𝑣 ∩ (0[,]+∞)) → ((𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)) ↔ (𝑆 ∈ (𝑣 ∩ (0[,]+∞)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ (𝑣 ∩ (0[,]+∞))))))
250244, 249syl5ibrcom 238 . . . . . 6 ((𝜑𝑣 ∈ (ordTop‘ ≤ )) → (𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
251250rexlimdva 3178 . . . . 5 (𝜑 → (∃𝑣 ∈ (ordTop‘ ≤ )𝑢 = (𝑣 ∩ (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
25268, 251syl5bi 233 . . . 4 (𝜑 → (𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) → (𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
253252ralrimiv 3112 . . 3 (𝜑 → ∀𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))(𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
254 xrstset 20038 . . . . . . 7 (ordTop‘ ≤ ) = (TopSet‘ℝ*𝑠)
2553, 254resstset 16318 . . . . . 6 ((0[,]+∞) ∈ V → (ordTop‘ ≤ ) = (TopSet‘𝐺))
25666, 255ax-mp 5 . . . . 5 (ordTop‘ ≤ ) = (TopSet‘𝐺)
2576, 256topnval 16361 . . . 4 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘𝐺)
258 eqid 2765 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
2599a1i 11 . . . 4 (𝜑𝐺 ∈ CMnd)
260 xrstps 21293 . . . . . . 7 *𝑠 ∈ TopSp
261 resstps 21271 . . . . . . 7 ((ℝ*𝑠 ∈ TopSp ∧ (0[,]+∞) ∈ V) → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
262260, 66, 261mp2an 683 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
2633, 262eqeltri 2840 . . . . 5 𝐺 ∈ TopSp
264263a1i 11 . . . 4 (𝜑𝐺 ∈ TopSp)
2656, 257, 258, 259, 264, 122, 12eltsms 22215 . . 3 (𝜑 → (𝑆 ∈ (𝐺 tsums 𝐹) ↔ (𝑆 ∈ (0[,]+∞) ∧ ∀𝑢 ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))(𝑆𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
26664, 253, 265mpbir2and 704 . 2 (𝜑𝑆 ∈ (𝐺 tsums 𝐹))
267 letsr 17493 . . . . 5 ≤ ∈ TosetRel
268 ordthaus 21468 . . . . 5 ( ≤ ∈ TosetRel → (ordTop‘ ≤ ) ∈ Haus)
269267, 268mp1i 13 . . . 4 (𝜑 → (ordTop‘ ≤ ) ∈ Haus)
270 resthaus 21452 . . . 4 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
271269, 66, 270sylancl 580 . . 3 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2726, 259, 264, 122, 12, 257, 271haustsms2 22219 . 2 (𝜑 → (𝑆 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑆}))
273266, 272mpd 15 1 (𝜑 → (𝐺 tsums 𝐹) = {𝑆})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  cdif 3729  cin 3731  wss 3732  c0 4079  𝒫 cpw 4315  {csn 4334   class class class wbr 4809  cmpt 4888   × cxp 5275  ran crn 5278  cres 5279  Fun wfun 6062   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  supcsup 8553  cc 10187  cr 10188  0cc0 10189  +∞cpnf 10325  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  (,)cioo 12377  (,]cioc 12378  [,]cicc 12380  Basecbs 16130  s cress 16131  TopSetcts 16220  t crest 16347  topGenctg 16364  0gc0g 16366   Σg cgsu 16367  ordTopcordt 16425  *𝑠cxrs 16426   TosetRel ctsr 17465  SubMndcsubmnd 17600  CMndccmn 18459  Topctop 20977  TopSpctps 21016  Hauscha 21392   tsums ctsu 22208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-xadd 12147  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-tset 16233  df-ple 16234  df-ds 16236  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-ordt 16427  df-xrs 16428  df-mre 16512  df-mrc 16513  df-acs 16515  df-ps 17466  df-tsr 17467  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-cntz 18013  df-cmn 18461  df-fbas 20016  df-fg 20017  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-ntr 21104  df-nei 21182  df-cn 21311  df-haus 21399  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-tsms 22209
This theorem is referenced by:  esumval  30555  esumel  30556  esumsnf  30573
  Copyright terms: Public domain W3C validator