Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc2 Structured version   Visualization version   GIF version

Theorem cdlemc2 39697
Description: Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
cdlemc2.l ≀ = (leβ€˜πΎ)
cdlemc2.j ∨ = (joinβ€˜πΎ)
cdlemc2.m ∧ = (meetβ€˜πΎ)
cdlemc2.a 𝐴 = (Atomsβ€˜πΎ)
cdlemc2.h 𝐻 = (LHypβ€˜πΎ)
cdlemc2.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemc2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜π‘„) ≀ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))

Proof of Theorem cdlemc2
StepHypRef Expression
1 simp1l 1194 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝐾 ∈ HL)
2 simp3ll 1241 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑃 ∈ 𝐴)
3 simp3rl 1243 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑄 ∈ 𝐴)
4 cdlemc2.l . . . . . 6 ≀ = (leβ€˜πΎ)
5 cdlemc2.j . . . . . 6 ∨ = (joinβ€˜πΎ)
6 cdlemc2.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
74, 5, 6hlatlej2 38880 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄 ≀ (𝑃 ∨ 𝑄))
81, 2, 3, 7syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑄 ≀ (𝑃 ∨ 𝑄))
9 simp1 1133 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
10 eqid 2728 . . . . . . 7 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1110, 6atbase 38793 . . . . . 6 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
123, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
13 simp3l 1198 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
14 cdlemc2.m . . . . . 6 ∧ = (meetβ€˜πΎ)
15 cdlemc2.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
1610, 4, 5, 14, 6, 15cdlemc1 39696 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = (𝑃 ∨ 𝑄))
179, 12, 13, 16syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) = (𝑃 ∨ 𝑄))
188, 17breqtrrd 5180 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑄 ≀ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))
19 simp2 1134 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝐹 ∈ 𝑇)
201hllatd 38868 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝐾 ∈ Lat)
2110, 6atbase 38793 . . . . . 6 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
222, 21syl 17 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2310, 5latjcl 18438 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
2420, 22, 12, 23syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
25 simp1r 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ π‘Š ∈ 𝐻)
2610, 15lhpbase 39503 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2725, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
2810, 14latmcl 18439 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
2920, 24, 27, 28syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))
3010, 5latjcl 18438 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
3120, 22, 29, 30syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))
32 cdlemc2.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3310, 4, 15, 32ltrnle 39634 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ∈ (Baseβ€˜πΎ))) β†’ (𝑄 ≀ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ↔ (πΉβ€˜π‘„) ≀ (πΉβ€˜(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))))
349, 19, 12, 31, 33syl112anc 1371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (𝑄 ≀ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)) ↔ (πΉβ€˜π‘„) ≀ (πΉβ€˜(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))))
3518, 34mpbid 231 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜π‘„) ≀ (πΉβ€˜(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))))
3610, 5, 15, 32ltrnj 39637 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ))) β†’ (πΉβ€˜(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜((𝑃 ∨ 𝑄) ∧ π‘Š))))
379, 19, 22, 29, 36syl112anc 1371 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜((𝑃 ∨ 𝑄) ∧ π‘Š))))
3810, 4, 14latmle2 18464 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
3920, 24, 27, 38syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
4010, 4, 15, 32ltrnval1 39639 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ (Baseβ€˜πΎ) ∧ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)) β†’ (πΉβ€˜((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ π‘Š))
419, 19, 29, 39, 40syl112anc 1371 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜((𝑃 ∨ 𝑄) ∧ π‘Š)) = ((𝑃 ∨ 𝑄) ∧ π‘Š))
4241oveq2d 7442 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜((𝑃 ∨ 𝑄) ∧ π‘Š))) = ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))
4337, 42eqtrd 2768 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š))) = ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))
4435, 43breqtrd 5178 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜π‘„) ≀ ((πΉβ€˜π‘ƒ) ∨ ((𝑃 ∨ 𝑄) ∧ π‘Š)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5152  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  lecple 17247  joincjn 18310  meetcmee 18311  Latclat 18430  Atomscatm 38767  HLchlt 38854  LHypclh 39489  LTrncltrn 39606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-map 8853  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610
This theorem is referenced by:  cdlemc5  39700
  Copyright terms: Public domain W3C validator