Proof of Theorem cdlemc2
Step | Hyp | Ref
| Expression |
1 | | simp1l 1196 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝐾 ∈ HL) |
2 | | simp3ll 1243 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
3 | | simp3rl 1245 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑄 ∈ 𝐴) |
4 | | cdlemc2.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
5 | | cdlemc2.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
6 | | cdlemc2.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
7 | 4, 5, 6 | hlatlej2 37390 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
8 | 1, 2, 3, 7 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑄 ≤ (𝑃 ∨ 𝑄)) |
9 | | simp1 1135 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
11 | 10, 6 | atbase 37303 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
12 | 3, 11 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑄 ∈ (Base‘𝐾)) |
13 | | simp3l 1200 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
14 | | cdlemc2.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
15 | | cdlemc2.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
16 | 10, 4, 5, 14, 6, 15 | cdlemc1 38205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = (𝑃 ∨ 𝑄)) |
17 | 9, 12, 13, 16 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) = (𝑃 ∨ 𝑄)) |
18 | 8, 17 | breqtrrd 5102 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑄 ≤ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
19 | | simp2 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝐹 ∈ 𝑇) |
20 | 1 | hllatd 37378 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝐾 ∈ Lat) |
21 | 10, 6 | atbase 37303 |
. . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
22 | 2, 21 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑃 ∈ (Base‘𝐾)) |
23 | 10, 5 | latjcl 18157 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
24 | 20, 22, 12, 23 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
25 | | simp1r 1197 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑊 ∈ 𝐻) |
26 | 10, 15 | lhpbase 38012 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
27 | 25, 26 | syl 17 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → 𝑊 ∈ (Base‘𝐾)) |
28 | 10, 14 | latmcl 18158 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
29 | 20, 24, 27, 28 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) |
30 | 10, 5 | latjcl 18157 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾)) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾)) |
31 | 20, 22, 29, 30 | syl3anc 1370 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾)) |
32 | | cdlemc2.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
33 | 10, 4, 15, 32 | ltrnle 38143 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ∈ (Base‘𝐾))) → (𝑄 ≤ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ↔ (𝐹‘𝑄) ≤ (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))))) |
34 | 9, 19, 12, 31, 33 | syl112anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑄 ≤ (𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)) ↔ (𝐹‘𝑄) ≤ (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))))) |
35 | 18, 34 | mpbid 231 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘𝑄) ≤ (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
36 | 10, 5, 15, 32 | ltrnj 38146 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾))) → (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) = ((𝐹‘𝑃) ∨ (𝐹‘((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
37 | 9, 19, 22, 29, 36 | syl112anc 1373 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) = ((𝐹‘𝑃) ∨ (𝐹‘((𝑃 ∨ 𝑄) ∧ 𝑊)))) |
38 | 10, 4, 14 | latmle2 18183 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
39 | 20, 24, 27, 38 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊) |
40 | 10, 4, 15, 32 | ltrnval1 38148 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ 𝑊)) → (𝐹‘((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
41 | 9, 19, 29, 39, 40 | syl112anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘((𝑃 ∨ 𝑄) ∧ 𝑊)) = ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
42 | 41 | oveq2d 7291 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ∨ (𝐹‘((𝑃 ∨ 𝑄) ∧ 𝑊))) = ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
43 | 37, 42 | eqtrd 2778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘(𝑃 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) = ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
44 | 35, 43 | breqtrd 5100 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘𝑄) ≤ ((𝐹‘𝑃) ∨ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |