Step | Hyp | Ref
| Expression |
1 | | simpl3r 1228 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π = π) β (π β¨ (π β§ π)) = π) |
2 | | simp3ll 1243 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β π β π΄) |
3 | 2 | adantr 480 |
. . . . . 6
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π = π) β π β π΄) |
4 | | cdlemef46.b |
. . . . . . 7
β’ π΅ = (BaseβπΎ) |
5 | | cdlemef46.a |
. . . . . . 7
β’ π΄ = (AtomsβπΎ) |
6 | 4, 5 | atbase 38463 |
. . . . . 6
β’ (π β π΄ β π β π΅) |
7 | 3, 6 | syl 17 |
. . . . 5
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π = π) β π β π΅) |
8 | | cdlemef46.f |
. . . . . 6
β’ πΉ = (π₯ β π΅ β¦ if((π β π β§ Β¬ π₯ β€ π), (β©π§ β π΅ βπ β π΄ ((Β¬ π β€ π β§ (π β¨ (π₯ β§ π)) = π₯) β π§ = (if(π β€ (π β¨ π), (β©π¦ β π΅ βπ‘ β π΄ ((Β¬ π‘ β€ π β§ Β¬ π‘ β€ (π β¨ π)) β π¦ = πΈ)), β¦π / π‘β¦π·) β¨ (π₯ β§ π)))), π₯)) |
9 | 8 | cdleme31id 39569 |
. . . . 5
β’ ((π β π΅ β§ π = π) β (πΉβπ) = π) |
10 | 7, 9 | sylancom 587 |
. . . 4
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π = π) β (πΉβπ) = π) |
11 | 10 | oveq1d 7427 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π = π) β ((πΉβπ) β¨ (π β§ π)) = (π β¨ (π β§ π))) |
12 | | simp2l 1198 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β π β π΅) |
13 | 8 | cdleme31id 39569 |
. . . 4
β’ ((π β π΅ β§ π = π) β (πΉβπ) = π) |
14 | 12, 13 | sylan 579 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π = π) β (πΉβπ) = π) |
15 | 1, 11, 14 | 3eqtr4rd 2782 |
. 2
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π = π) β (πΉβπ) = ((πΉβπ) β¨ (π β§ π))) |
16 | | simpl1 1190 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π β π) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π))) |
17 | | simpr 484 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π β π) β π β π) |
18 | | simpl2 1191 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π β π) β (π β π΅ β§ Β¬ π β€ π)) |
19 | | simpl3 1192 |
. . 3
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π β π) β ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) |
20 | | cdlemef46.l |
. . . 4
β’ β€ =
(leβπΎ) |
21 | | cdlemef46.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
22 | | cdlemef46.m |
. . . 4
β’ β§ =
(meetβπΎ) |
23 | | cdlemef46.h |
. . . 4
β’ π» = (LHypβπΎ) |
24 | | cdlemef46.u |
. . . 4
β’ π = ((π β¨ π) β§ π) |
25 | | cdlemef46.d |
. . . 4
β’ π· = ((π‘ β¨ π) β§ (π β¨ ((π β¨ π‘) β§ π))) |
26 | | cdlemefs46.e |
. . . 4
β’ πΈ = ((π β¨ π) β§ (π· β¨ ((π β¨ π‘) β§ π))) |
27 | 4, 20, 21, 22, 5, 23, 24, 25, 26, 8 | cdleme48fv 39674 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΅ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β (πΉβπ) = ((πΉβπ) β¨ (π β§ π))) |
28 | 16, 17, 18, 19, 27 | syl121anc 1374 |
. 2
β’
(((((πΎ β HL
β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β§ π β π) β (πΉβπ) = ((πΉβπ) β¨ (π β§ π))) |
29 | 15, 28 | pm2.61dane 3028 |
1
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΅ β§ Β¬ π β€ π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β¨ (π β§ π)) = π)) β (πΉβπ) = ((πΉβπ) β¨ (π β§ π))) |