MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indiscld Structured version   Visualization version   GIF version

Theorem indiscld 23099
Description: The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indiscld (Clsd‘{∅, 𝐴}) = {∅, 𝐴}

Proof of Theorem indiscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indistop 23009 . . . . 5 {∅, 𝐴} ∈ Top
2 indisuni 23010 . . . . . 6 ( I ‘𝐴) = {∅, 𝐴}
32iscld 23035 . . . . 5 ({∅, 𝐴} ∈ Top → (𝑥 ∈ (Clsd‘{∅, 𝐴}) ↔ (𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴})))
41, 3ax-mp 5 . . . 4 (𝑥 ∈ (Clsd‘{∅, 𝐴}) ↔ (𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}))
5 simpl 482 . . . . . 6 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → 𝑥 ⊆ ( I ‘𝐴))
6 dfss4 4269 . . . . . 6 (𝑥 ⊆ ( I ‘𝐴) ↔ (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = 𝑥)
75, 6sylib 218 . . . . 5 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = 𝑥)
8 simpr 484 . . . . . . 7 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴})
9 indislem 23007 . . . . . . 7 {∅, ( I ‘𝐴)} = {∅, 𝐴}
108, 9eleqtrrdi 2852 . . . . . 6 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ 𝑥) ∈ {∅, ( I ‘𝐴)})
11 elpri 4649 . . . . . 6 ((( I ‘𝐴) ∖ 𝑥) ∈ {∅, ( I ‘𝐴)} → ((( I ‘𝐴) ∖ 𝑥) = ∅ ∨ (( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴)))
12 difeq2 4120 . . . . . . . . 9 ((( I ‘𝐴) ∖ 𝑥) = ∅ → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = (( I ‘𝐴) ∖ ∅))
13 dif0 4378 . . . . . . . . 9 (( I ‘𝐴) ∖ ∅) = ( I ‘𝐴)
1412, 13eqtrdi 2793 . . . . . . . 8 ((( I ‘𝐴) ∖ 𝑥) = ∅ → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = ( I ‘𝐴))
15 fvex 6919 . . . . . . . . . 10 ( I ‘𝐴) ∈ V
1615prid2 4763 . . . . . . . . 9 ( I ‘𝐴) ∈ {∅, ( I ‘𝐴)}
1716, 9eleqtri 2839 . . . . . . . 8 ( I ‘𝐴) ∈ {∅, 𝐴}
1814, 17eqeltrdi 2849 . . . . . . 7 ((( I ‘𝐴) ∖ 𝑥) = ∅ → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴})
19 difeq2 4120 . . . . . . . . 9 ((( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = (( I ‘𝐴) ∖ ( I ‘𝐴)))
20 difid 4376 . . . . . . . . 9 (( I ‘𝐴) ∖ ( I ‘𝐴)) = ∅
2119, 20eqtrdi 2793 . . . . . . . 8 ((( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = ∅)
22 0ex 5307 . . . . . . . . 9 ∅ ∈ V
2322prid1 4762 . . . . . . . 8 ∅ ∈ {∅, 𝐴}
2421, 23eqeltrdi 2849 . . . . . . 7 ((( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴})
2518, 24jaoi 858 . . . . . 6 (((( I ‘𝐴) ∖ 𝑥) = ∅ ∨ (( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴)) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴})
2610, 11, 253syl 18 . . . . 5 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴})
277, 26eqeltrrd 2842 . . . 4 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → 𝑥 ∈ {∅, 𝐴})
284, 27sylbi 217 . . 3 (𝑥 ∈ (Clsd‘{∅, 𝐴}) → 𝑥 ∈ {∅, 𝐴})
2928ssriv 3987 . 2 (Clsd‘{∅, 𝐴}) ⊆ {∅, 𝐴}
30 0cld 23046 . . . . 5 ({∅, 𝐴} ∈ Top → ∅ ∈ (Clsd‘{∅, 𝐴}))
311, 30ax-mp 5 . . . 4 ∅ ∈ (Clsd‘{∅, 𝐴})
322topcld 23043 . . . . 5 ({∅, 𝐴} ∈ Top → ( I ‘𝐴) ∈ (Clsd‘{∅, 𝐴}))
331, 32ax-mp 5 . . . 4 ( I ‘𝐴) ∈ (Clsd‘{∅, 𝐴})
34 prssi 4821 . . . 4 ((∅ ∈ (Clsd‘{∅, 𝐴}) ∧ ( I ‘𝐴) ∈ (Clsd‘{∅, 𝐴})) → {∅, ( I ‘𝐴)} ⊆ (Clsd‘{∅, 𝐴}))
3531, 33, 34mp2an 692 . . 3 {∅, ( I ‘𝐴)} ⊆ (Clsd‘{∅, 𝐴})
369, 35eqsstrri 4031 . 2 {∅, 𝐴} ⊆ (Clsd‘{∅, 𝐴})
3729, 36eqssi 4000 1 (Clsd‘{∅, 𝐴}) = {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  cdif 3948  wss 3951  c0 4333  {cpr 4628   I cid 5577  cfv 6561  Topctop 22899  Clsdccld 23024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-top 22900  df-topon 22917  df-cld 23027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator