Step | Hyp | Ref
| Expression |
1 | | indistop 22201 |
. . . . 5
⊢ {∅,
𝐴} ∈
Top |
2 | | indisuni 22202 |
. . . . . 6
⊢ ( I
‘𝐴) = ∪ {∅, 𝐴} |
3 | 2 | iscld 22227 |
. . . . 5
⊢
({∅, 𝐴} ∈
Top → (𝑥 ∈
(Clsd‘{∅, 𝐴})
↔ (𝑥 ⊆ ( I
‘𝐴) ∧ (( I
‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}))) |
4 | 1, 3 | ax-mp 5 |
. . . 4
⊢ (𝑥 ∈ (Clsd‘{∅,
𝐴}) ↔ (𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴})) |
5 | | simpl 484 |
. . . . . 6
⊢ ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → 𝑥 ⊆ ( I ‘𝐴)) |
6 | | dfss4 4198 |
. . . . . 6
⊢ (𝑥 ⊆ ( I ‘𝐴) ↔ (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = 𝑥) |
7 | 5, 6 | sylib 217 |
. . . . 5
⊢ ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = 𝑥) |
8 | | simpr 486 |
. . . . . . 7
⊢ ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) |
9 | | indislem 22199 |
. . . . . . 7
⊢ {∅,
( I ‘𝐴)} = {∅,
𝐴} |
10 | 8, 9 | eleqtrrdi 2848 |
. . . . . 6
⊢ ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ 𝑥) ∈ {∅, ( I ‘𝐴)}) |
11 | | elpri 4587 |
. . . . . 6
⊢ ((( I
‘𝐴) ∖ 𝑥) ∈ {∅, ( I
‘𝐴)} → ((( I
‘𝐴) ∖ 𝑥) = ∅ ∨ (( I
‘𝐴) ∖ 𝑥) = ( I ‘𝐴))) |
12 | | difeq2 4057 |
. . . . . . . . 9
⊢ ((( I
‘𝐴) ∖ 𝑥) = ∅ → (( I
‘𝐴) ∖ (( I
‘𝐴) ∖ 𝑥)) = (( I ‘𝐴) ∖
∅)) |
13 | | dif0 4312 |
. . . . . . . . 9
⊢ (( I
‘𝐴) ∖ ∅)
= ( I ‘𝐴) |
14 | 12, 13 | eqtrdi 2792 |
. . . . . . . 8
⊢ ((( I
‘𝐴) ∖ 𝑥) = ∅ → (( I
‘𝐴) ∖ (( I
‘𝐴) ∖ 𝑥)) = ( I ‘𝐴)) |
15 | | fvex 6817 |
. . . . . . . . . 10
⊢ ( I
‘𝐴) ∈
V |
16 | 15 | prid2 4703 |
. . . . . . . . 9
⊢ ( I
‘𝐴) ∈ {∅,
( I ‘𝐴)} |
17 | 16, 9 | eleqtri 2835 |
. . . . . . . 8
⊢ ( I
‘𝐴) ∈ {∅,
𝐴} |
18 | 14, 17 | eqeltrdi 2845 |
. . . . . . 7
⊢ ((( I
‘𝐴) ∖ 𝑥) = ∅ → (( I
‘𝐴) ∖ (( I
‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴}) |
19 | | difeq2 4057 |
. . . . . . . . 9
⊢ ((( I
‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = (( I ‘𝐴) ∖ ( I ‘𝐴))) |
20 | | difid 4310 |
. . . . . . . . 9
⊢ (( I
‘𝐴) ∖ ( I
‘𝐴)) =
∅ |
21 | 19, 20 | eqtrdi 2792 |
. . . . . . . 8
⊢ ((( I
‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = ∅) |
22 | | 0ex 5240 |
. . . . . . . . 9
⊢ ∅
∈ V |
23 | 22 | prid1 4702 |
. . . . . . . 8
⊢ ∅
∈ {∅, 𝐴} |
24 | 21, 23 | eqeltrdi 2845 |
. . . . . . 7
⊢ ((( I
‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴}) |
25 | 18, 24 | jaoi 855 |
. . . . . 6
⊢ (((( I
‘𝐴) ∖ 𝑥) = ∅ ∨ (( I
‘𝐴) ∖ 𝑥) = ( I ‘𝐴)) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴}) |
26 | 10, 11, 25 | 3syl 18 |
. . . . 5
⊢ ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴}) |
27 | 7, 26 | eqeltrrd 2838 |
. . . 4
⊢ ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → 𝑥 ∈ {∅, 𝐴}) |
28 | 4, 27 | sylbi 216 |
. . 3
⊢ (𝑥 ∈ (Clsd‘{∅,
𝐴}) → 𝑥 ∈ {∅, 𝐴}) |
29 | 28 | ssriv 3930 |
. 2
⊢
(Clsd‘{∅, 𝐴}) ⊆ {∅, 𝐴} |
30 | | 0cld 22238 |
. . . . 5
⊢
({∅, 𝐴} ∈
Top → ∅ ∈ (Clsd‘{∅, 𝐴})) |
31 | 1, 30 | ax-mp 5 |
. . . 4
⊢ ∅
∈ (Clsd‘{∅, 𝐴}) |
32 | 2 | topcld 22235 |
. . . . 5
⊢
({∅, 𝐴} ∈
Top → ( I ‘𝐴)
∈ (Clsd‘{∅, 𝐴})) |
33 | 1, 32 | ax-mp 5 |
. . . 4
⊢ ( I
‘𝐴) ∈
(Clsd‘{∅, 𝐴}) |
34 | | prssi 4760 |
. . . 4
⊢ ((∅
∈ (Clsd‘{∅, 𝐴}) ∧ ( I ‘𝐴) ∈ (Clsd‘{∅, 𝐴})) → {∅, ( I
‘𝐴)} ⊆
(Clsd‘{∅, 𝐴})) |
35 | 31, 33, 34 | mp2an 690 |
. . 3
⊢ {∅,
( I ‘𝐴)} ⊆
(Clsd‘{∅, 𝐴}) |
36 | 9, 35 | eqsstrri 3961 |
. 2
⊢ {∅,
𝐴} ⊆
(Clsd‘{∅, 𝐴}) |
37 | 29, 36 | eqssi 3942 |
1
⊢
(Clsd‘{∅, 𝐴}) = {∅, 𝐴} |