MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indiscld Structured version   Visualization version   GIF version

Theorem indiscld 21698
Description: The closed sets of an indiscrete topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
indiscld (Clsd‘{∅, 𝐴}) = {∅, 𝐴}

Proof of Theorem indiscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indistop 21609 . . . . 5 {∅, 𝐴} ∈ Top
2 indisuni 21610 . . . . . 6 ( I ‘𝐴) = {∅, 𝐴}
32iscld 21634 . . . . 5 ({∅, 𝐴} ∈ Top → (𝑥 ∈ (Clsd‘{∅, 𝐴}) ↔ (𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴})))
41, 3ax-mp 5 . . . 4 (𝑥 ∈ (Clsd‘{∅, 𝐴}) ↔ (𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}))
5 simpl 485 . . . . . 6 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → 𝑥 ⊆ ( I ‘𝐴))
6 dfss4 4234 . . . . . 6 (𝑥 ⊆ ( I ‘𝐴) ↔ (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = 𝑥)
75, 6sylib 220 . . . . 5 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = 𝑥)
8 simpr 487 . . . . . . 7 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴})
9 indislem 21607 . . . . . . 7 {∅, ( I ‘𝐴)} = {∅, 𝐴}
108, 9eleqtrrdi 2924 . . . . . 6 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ 𝑥) ∈ {∅, ( I ‘𝐴)})
11 elpri 4588 . . . . . 6 ((( I ‘𝐴) ∖ 𝑥) ∈ {∅, ( I ‘𝐴)} → ((( I ‘𝐴) ∖ 𝑥) = ∅ ∨ (( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴)))
12 difeq2 4092 . . . . . . . . 9 ((( I ‘𝐴) ∖ 𝑥) = ∅ → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = (( I ‘𝐴) ∖ ∅))
13 dif0 4331 . . . . . . . . 9 (( I ‘𝐴) ∖ ∅) = ( I ‘𝐴)
1412, 13syl6eq 2872 . . . . . . . 8 ((( I ‘𝐴) ∖ 𝑥) = ∅ → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = ( I ‘𝐴))
15 fvex 6682 . . . . . . . . . 10 ( I ‘𝐴) ∈ V
1615prid2 4698 . . . . . . . . 9 ( I ‘𝐴) ∈ {∅, ( I ‘𝐴)}
1716, 9eleqtri 2911 . . . . . . . 8 ( I ‘𝐴) ∈ {∅, 𝐴}
1814, 17eqeltrdi 2921 . . . . . . 7 ((( I ‘𝐴) ∖ 𝑥) = ∅ → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴})
19 difeq2 4092 . . . . . . . . 9 ((( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = (( I ‘𝐴) ∖ ( I ‘𝐴)))
20 difid 4329 . . . . . . . . 9 (( I ‘𝐴) ∖ ( I ‘𝐴)) = ∅
2119, 20syl6eq 2872 . . . . . . . 8 ((( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) = ∅)
22 0ex 5210 . . . . . . . . 9 ∅ ∈ V
2322prid1 4697 . . . . . . . 8 ∅ ∈ {∅, 𝐴}
2421, 23eqeltrdi 2921 . . . . . . 7 ((( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴})
2518, 24jaoi 853 . . . . . 6 (((( I ‘𝐴) ∖ 𝑥) = ∅ ∨ (( I ‘𝐴) ∖ 𝑥) = ( I ‘𝐴)) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴})
2610, 11, 253syl 18 . . . . 5 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → (( I ‘𝐴) ∖ (( I ‘𝐴) ∖ 𝑥)) ∈ {∅, 𝐴})
277, 26eqeltrrd 2914 . . . 4 ((𝑥 ⊆ ( I ‘𝐴) ∧ (( I ‘𝐴) ∖ 𝑥) ∈ {∅, 𝐴}) → 𝑥 ∈ {∅, 𝐴})
284, 27sylbi 219 . . 3 (𝑥 ∈ (Clsd‘{∅, 𝐴}) → 𝑥 ∈ {∅, 𝐴})
2928ssriv 3970 . 2 (Clsd‘{∅, 𝐴}) ⊆ {∅, 𝐴}
30 0cld 21645 . . . . 5 ({∅, 𝐴} ∈ Top → ∅ ∈ (Clsd‘{∅, 𝐴}))
311, 30ax-mp 5 . . . 4 ∅ ∈ (Clsd‘{∅, 𝐴})
322topcld 21642 . . . . 5 ({∅, 𝐴} ∈ Top → ( I ‘𝐴) ∈ (Clsd‘{∅, 𝐴}))
331, 32ax-mp 5 . . . 4 ( I ‘𝐴) ∈ (Clsd‘{∅, 𝐴})
34 prssi 4753 . . . 4 ((∅ ∈ (Clsd‘{∅, 𝐴}) ∧ ( I ‘𝐴) ∈ (Clsd‘{∅, 𝐴})) → {∅, ( I ‘𝐴)} ⊆ (Clsd‘{∅, 𝐴}))
3531, 33, 34mp2an 690 . . 3 {∅, ( I ‘𝐴)} ⊆ (Clsd‘{∅, 𝐴})
369, 35eqsstrri 4001 . 2 {∅, 𝐴} ⊆ (Clsd‘{∅, 𝐴})
3729, 36eqssi 3982 1 (Clsd‘{∅, 𝐴}) = {∅, 𝐴}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  cdif 3932  wss 3935  c0 4290  {cpr 4568   I cid 5458  cfv 6354  Topctop 21500  Clsdccld 21623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-top 21501  df-topon 21518  df-cld 21626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator