| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsproplem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| addsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| addspropord.2 | ⊢ (𝜑 → 𝑋 ∈ No ) |
| addspropord.3 | ⊢ (𝜑 → 𝑌 ∈ No ) |
| addspropord.4 | ⊢ (𝜑 → 𝑍 ∈ No ) |
| addspropord.5 | ⊢ (𝜑 → 𝑌 <s 𝑍) |
| addsproplem5.6 | ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) |
| Ref | Expression |
|---|---|
| addsproplem5 | ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsproplem.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) | |
| 2 | addspropord.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ No ) | |
| 3 | addspropord.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ No ) | |
| 4 | 1, 2, 3 | addsproplem3 27901 | . . . 4 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( L ‘𝑌)𝑔 = (𝑋 +s ℎ)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))) |
| 5 | 4 | simp3d 1144 | . . 3 ⊢ (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) |
| 6 | ovex 7386 | . . . . 5 ⊢ (𝑋 +s 𝑌) ∈ V | |
| 7 | 6 | snid 4616 | . . . 4 ⊢ (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)} |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}) |
| 9 | addsproplem5.6 | . . . . . . . 8 ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) | |
| 10 | bdayelon 27704 | . . . . . . . . 9 ⊢ ( bday ‘𝑌) ∈ On | |
| 11 | addspropord.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ No ) | |
| 12 | oldbday 27833 | . . . . . . . . 9 ⊢ ((( bday ‘𝑌) ∈ On ∧ 𝑍 ∈ No ) → (𝑍 ∈ ( O ‘( bday ‘𝑌)) ↔ ( bday ‘𝑍) ∈ ( bday ‘𝑌))) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 ∈ ( O ‘( bday ‘𝑌)) ↔ ( bday ‘𝑍) ∈ ( bday ‘𝑌))) |
| 14 | 9, 13 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ ( O ‘( bday ‘𝑌))) |
| 15 | addspropord.5 | . . . . . . 7 ⊢ (𝜑 → 𝑌 <s 𝑍) | |
| 16 | elright 27794 | . . . . . . 7 ⊢ (𝑍 ∈ ( R ‘𝑌) ↔ (𝑍 ∈ ( O ‘( bday ‘𝑌)) ∧ 𝑌 <s 𝑍)) | |
| 17 | 14, 15, 16 | sylanbrc 583 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ ( R ‘𝑌)) |
| 18 | eqid 2729 | . . . . . 6 ⊢ (𝑋 +s 𝑍) = (𝑋 +s 𝑍) | |
| 19 | oveq2 7361 | . . . . . . 7 ⊢ (𝑑 = 𝑍 → (𝑋 +s 𝑑) = (𝑋 +s 𝑍)) | |
| 20 | 19 | rspceeqv 3602 | . . . . . 6 ⊢ ((𝑍 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑍) = (𝑋 +s 𝑍)) → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
| 21 | 17, 18, 20 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
| 22 | ovex 7386 | . . . . . 6 ⊢ (𝑋 +s 𝑍) ∈ V | |
| 23 | eqeq1 2733 | . . . . . . 7 ⊢ (𝑏 = (𝑋 +s 𝑍) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑍) = (𝑋 +s 𝑑))) | |
| 24 | 23 | rexbidv 3153 | . . . . . 6 ⊢ (𝑏 = (𝑋 +s 𝑍) → (∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))) |
| 25 | 22, 24 | elab 3637 | . . . . 5 ⊢ ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
| 26 | 21, 25 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}) |
| 27 | elun2 4136 | . . . 4 ⊢ ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) | |
| 28 | 26, 27 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) |
| 29 | 5, 8, 28 | ssltsepcd 27723 | . 2 ⊢ (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍)) |
| 30 | 3, 2 | addscomd 27897 | . 2 ⊢ (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌)) |
| 31 | 11, 2 | addscomd 27897 | . 2 ⊢ (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍)) |
| 32 | 29, 30, 31 | 3brtr4d 5127 | 1 ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ∪ cun 3903 {csn 4579 class class class wbr 5095 Oncon0 6311 ‘cfv 6486 (class class class)co 7353 +no cnadd 8590 No csur 27567 <s cslt 27568 bday cbday 27569 <<s csslt 27709 O cold 27771 L cleft 27773 R cright 27774 +s cadds 27889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-nadd 8591 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec2 27879 df-adds 27890 |
| This theorem is referenced by: addsproplem7 27905 |
| Copyright terms: Public domain | W3C validator |