| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addsproplem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.) |
| Ref | Expression |
|---|---|
| addsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
| addspropord.2 | ⊢ (𝜑 → 𝑋 ∈ No ) |
| addspropord.3 | ⊢ (𝜑 → 𝑌 ∈ No ) |
| addspropord.4 | ⊢ (𝜑 → 𝑍 ∈ No ) |
| addspropord.5 | ⊢ (𝜑 → 𝑌 <s 𝑍) |
| addsproplem5.6 | ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) |
| Ref | Expression |
|---|---|
| addsproplem5 | ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsproplem.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) | |
| 2 | addspropord.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ No ) | |
| 3 | addspropord.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ No ) | |
| 4 | 1, 2, 3 | addsproplem3 27921 | . . . 4 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( L ‘𝑌)𝑔 = (𝑋 +s ℎ)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))) |
| 5 | 4 | simp3d 1144 | . . 3 ⊢ (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) |
| 6 | ovex 7436 | . . . . 5 ⊢ (𝑋 +s 𝑌) ∈ V | |
| 7 | 6 | snid 4638 | . . . 4 ⊢ (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)} |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}) |
| 9 | addsproplem5.6 | . . . . . . . 8 ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) | |
| 10 | bdayelon 27738 | . . . . . . . . 9 ⊢ ( bday ‘𝑌) ∈ On | |
| 11 | addspropord.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ No ) | |
| 12 | oldbday 27856 | . . . . . . . . 9 ⊢ ((( bday ‘𝑌) ∈ On ∧ 𝑍 ∈ No ) → (𝑍 ∈ ( O ‘( bday ‘𝑌)) ↔ ( bday ‘𝑍) ∈ ( bday ‘𝑌))) | |
| 13 | 10, 11, 12 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 ∈ ( O ‘( bday ‘𝑌)) ↔ ( bday ‘𝑍) ∈ ( bday ‘𝑌))) |
| 14 | 9, 13 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ ( O ‘( bday ‘𝑌))) |
| 15 | addspropord.5 | . . . . . . 7 ⊢ (𝜑 → 𝑌 <s 𝑍) | |
| 16 | breq2 5123 | . . . . . . . 8 ⊢ (𝑧 = 𝑍 → (𝑌 <s 𝑧 ↔ 𝑌 <s 𝑍)) | |
| 17 | rightval 27820 | . . . . . . . 8 ⊢ ( R ‘𝑌) = {𝑧 ∈ ( O ‘( bday ‘𝑌)) ∣ 𝑌 <s 𝑧} | |
| 18 | 16, 17 | elrab2 3674 | . . . . . . 7 ⊢ (𝑍 ∈ ( R ‘𝑌) ↔ (𝑍 ∈ ( O ‘( bday ‘𝑌)) ∧ 𝑌 <s 𝑍)) |
| 19 | 14, 15, 18 | sylanbrc 583 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ ( R ‘𝑌)) |
| 20 | eqid 2735 | . . . . . 6 ⊢ (𝑋 +s 𝑍) = (𝑋 +s 𝑍) | |
| 21 | oveq2 7411 | . . . . . . 7 ⊢ (𝑑 = 𝑍 → (𝑋 +s 𝑑) = (𝑋 +s 𝑍)) | |
| 22 | 21 | rspceeqv 3624 | . . . . . 6 ⊢ ((𝑍 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑍) = (𝑋 +s 𝑍)) → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
| 23 | 19, 20, 22 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
| 24 | ovex 7436 | . . . . . 6 ⊢ (𝑋 +s 𝑍) ∈ V | |
| 25 | eqeq1 2739 | . . . . . . 7 ⊢ (𝑏 = (𝑋 +s 𝑍) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑍) = (𝑋 +s 𝑑))) | |
| 26 | 25 | rexbidv 3164 | . . . . . 6 ⊢ (𝑏 = (𝑋 +s 𝑍) → (∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))) |
| 27 | 24, 26 | elab 3658 | . . . . 5 ⊢ ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
| 28 | 23, 27 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}) |
| 29 | elun2 4158 | . . . 4 ⊢ ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) | |
| 30 | 28, 29 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) |
| 31 | 5, 8, 30 | ssltsepcd 27756 | . 2 ⊢ (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍)) |
| 32 | 3, 2 | addscomd 27917 | . 2 ⊢ (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌)) |
| 33 | 11, 2 | addscomd 27917 | . 2 ⊢ (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍)) |
| 34 | 31, 32, 33 | 3brtr4d 5151 | 1 ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∃wrex 3060 ∪ cun 3924 {csn 4601 class class class wbr 5119 Oncon0 6352 ‘cfv 6530 (class class class)co 7403 +no cnadd 8675 No csur 27601 <s cslt 27602 bday cbday 27603 <<s csslt 27742 O cold 27799 L cleft 27801 R cright 27802 +s cadds 27909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-nadd 8676 df-no 27604 df-slt 27605 df-bday 27606 df-sslt 27743 df-scut 27745 df-0s 27786 df-made 27803 df-old 27804 df-left 27806 df-right 27807 df-norec2 27899 df-adds 27910 |
| This theorem is referenced by: addsproplem7 27925 |
| Copyright terms: Public domain | W3C validator |