![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsproplem5 | Structured version Visualization version GIF version |
Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.) |
Ref | Expression |
---|---|
addsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
addspropord.2 | ⊢ (𝜑 → 𝑋 ∈ No ) |
addspropord.3 | ⊢ (𝜑 → 𝑌 ∈ No ) |
addspropord.4 | ⊢ (𝜑 → 𝑍 ∈ No ) |
addspropord.5 | ⊢ (𝜑 → 𝑌 <s 𝑍) |
addsproplem5.6 | ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) |
Ref | Expression |
---|---|
addsproplem5 | ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsproplem.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) | |
2 | addspropord.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ No ) | |
3 | addspropord.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ No ) | |
4 | 1, 2, 3 | addsproplem3 28022 | . . . 4 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( L ‘𝑌)𝑔 = (𝑋 +s ℎ)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))) |
5 | 4 | simp3d 1144 | . . 3 ⊢ (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) |
6 | ovex 7481 | . . . . 5 ⊢ (𝑋 +s 𝑌) ∈ V | |
7 | 6 | snid 4684 | . . . 4 ⊢ (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)} |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}) |
9 | addsproplem5.6 | . . . . . . . 8 ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) | |
10 | bdayelon 27839 | . . . . . . . . 9 ⊢ ( bday ‘𝑌) ∈ On | |
11 | addspropord.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ No ) | |
12 | oldbday 27957 | . . . . . . . . 9 ⊢ ((( bday ‘𝑌) ∈ On ∧ 𝑍 ∈ No ) → (𝑍 ∈ ( O ‘( bday ‘𝑌)) ↔ ( bday ‘𝑍) ∈ ( bday ‘𝑌))) | |
13 | 10, 11, 12 | sylancr 586 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 ∈ ( O ‘( bday ‘𝑌)) ↔ ( bday ‘𝑍) ∈ ( bday ‘𝑌))) |
14 | 9, 13 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ ( O ‘( bday ‘𝑌))) |
15 | addspropord.5 | . . . . . . 7 ⊢ (𝜑 → 𝑌 <s 𝑍) | |
16 | breq2 5170 | . . . . . . . 8 ⊢ (𝑧 = 𝑍 → (𝑌 <s 𝑧 ↔ 𝑌 <s 𝑍)) | |
17 | rightval 27921 | . . . . . . . 8 ⊢ ( R ‘𝑌) = {𝑧 ∈ ( O ‘( bday ‘𝑌)) ∣ 𝑌 <s 𝑧} | |
18 | 16, 17 | elrab2 3711 | . . . . . . 7 ⊢ (𝑍 ∈ ( R ‘𝑌) ↔ (𝑍 ∈ ( O ‘( bday ‘𝑌)) ∧ 𝑌 <s 𝑍)) |
19 | 14, 15, 18 | sylanbrc 582 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ ( R ‘𝑌)) |
20 | eqid 2740 | . . . . . 6 ⊢ (𝑋 +s 𝑍) = (𝑋 +s 𝑍) | |
21 | oveq2 7456 | . . . . . . 7 ⊢ (𝑑 = 𝑍 → (𝑋 +s 𝑑) = (𝑋 +s 𝑍)) | |
22 | 21 | rspceeqv 3658 | . . . . . 6 ⊢ ((𝑍 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑍) = (𝑋 +s 𝑍)) → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
23 | 19, 20, 22 | sylancl 585 | . . . . 5 ⊢ (𝜑 → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
24 | ovex 7481 | . . . . . 6 ⊢ (𝑋 +s 𝑍) ∈ V | |
25 | eqeq1 2744 | . . . . . . 7 ⊢ (𝑏 = (𝑋 +s 𝑍) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑍) = (𝑋 +s 𝑑))) | |
26 | 25 | rexbidv 3185 | . . . . . 6 ⊢ (𝑏 = (𝑋 +s 𝑍) → (∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))) |
27 | 24, 26 | elab 3694 | . . . . 5 ⊢ ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
28 | 23, 27 | sylibr 234 | . . . 4 ⊢ (𝜑 → (𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}) |
29 | elun2 4206 | . . . 4 ⊢ ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) |
31 | 5, 8, 30 | ssltsepcd 27857 | . 2 ⊢ (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍)) |
32 | 3, 2 | addscomd 28018 | . 2 ⊢ (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌)) |
33 | 11, 2 | addscomd 28018 | . 2 ⊢ (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍)) |
34 | 31, 32, 33 | 3brtr4d 5198 | 1 ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ∪ cun 3974 {csn 4648 class class class wbr 5166 Oncon0 6395 ‘cfv 6573 (class class class)co 7448 +no cnadd 8721 No csur 27702 <s cslt 27703 bday cbday 27704 <<s csslt 27843 O cold 27900 L cleft 27902 R cright 27903 +s cadds 28010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-0s 27887 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec2 28000 df-adds 28011 |
This theorem is referenced by: addsproplem7 28026 |
Copyright terms: Public domain | W3C validator |