MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem5 Structured version   Visualization version   GIF version

Theorem addsproplem5 27923
Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
addsproplem5.6 (𝜑 → ( bday 𝑍) ∈ ( bday 𝑌))
Assertion
Ref Expression
addsproplem5 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsproplem.1 . . . . 5 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
2 addspropord.2 . . . . 5 (𝜑𝑋 No )
3 addspropord.3 . . . . 5 (𝜑𝑌 No )
41, 2, 3addsproplem3 27921 . . . 4 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( L ‘𝑌)𝑔 = (𝑋 +s )}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})))
54simp3d 1144 . . 3 (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
6 ovex 7436 . . . . 5 (𝑋 +s 𝑌) ∈ V
76snid 4638 . . . 4 (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}
87a1i 11 . . 3 (𝜑 → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)})
9 addsproplem5.6 . . . . . . . 8 (𝜑 → ( bday 𝑍) ∈ ( bday 𝑌))
10 bdayelon 27738 . . . . . . . . 9 ( bday 𝑌) ∈ On
11 addspropord.4 . . . . . . . . 9 (𝜑𝑍 No )
12 oldbday 27856 . . . . . . . . 9 ((( bday 𝑌) ∈ On ∧ 𝑍 No ) → (𝑍 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑍) ∈ ( bday 𝑌)))
1310, 11, 12sylancr 587 . . . . . . . 8 (𝜑 → (𝑍 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑍) ∈ ( bday 𝑌)))
149, 13mpbird 257 . . . . . . 7 (𝜑𝑍 ∈ ( O ‘( bday 𝑌)))
15 addspropord.5 . . . . . . 7 (𝜑𝑌 <s 𝑍)
16 breq2 5123 . . . . . . . 8 (𝑧 = 𝑍 → (𝑌 <s 𝑧𝑌 <s 𝑍))
17 rightval 27820 . . . . . . . 8 ( R ‘𝑌) = {𝑧 ∈ ( O ‘( bday 𝑌)) ∣ 𝑌 <s 𝑧}
1816, 17elrab2 3674 . . . . . . 7 (𝑍 ∈ ( R ‘𝑌) ↔ (𝑍 ∈ ( O ‘( bday 𝑌)) ∧ 𝑌 <s 𝑍))
1914, 15, 18sylanbrc 583 . . . . . 6 (𝜑𝑍 ∈ ( R ‘𝑌))
20 eqid 2735 . . . . . 6 (𝑋 +s 𝑍) = (𝑋 +s 𝑍)
21 oveq2 7411 . . . . . . 7 (𝑑 = 𝑍 → (𝑋 +s 𝑑) = (𝑋 +s 𝑍))
2221rspceeqv 3624 . . . . . 6 ((𝑍 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑍) = (𝑋 +s 𝑍)) → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
2319, 20, 22sylancl 586 . . . . 5 (𝜑 → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
24 ovex 7436 . . . . . 6 (𝑋 +s 𝑍) ∈ V
25 eqeq1 2739 . . . . . . 7 (𝑏 = (𝑋 +s 𝑍) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑍) = (𝑋 +s 𝑑)))
2625rexbidv 3164 . . . . . 6 (𝑏 = (𝑋 +s 𝑍) → (∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)))
2724, 26elab 3658 . . . . 5 ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
2823, 27sylibr 234 . . . 4 (𝜑 → (𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})
29 elun2 4158 . . . 4 ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
3028, 29syl 17 . . 3 (𝜑 → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
315, 8, 30ssltsepcd 27756 . 2 (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
323, 2addscomd 27917 . 2 (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌))
3311, 2addscomd 27917 . 2 (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍))
3431, 32, 333brtr4d 5151 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wrex 3060  cun 3924  {csn 4601   class class class wbr 5119  Oncon0 6352  cfv 6530  (class class class)co 7403   +no cnadd 8675   No csur 27601   <s cslt 27602   bday cbday 27603   <<s csslt 27742   O cold 27799   L cleft 27801   R cright 27802   +s cadds 27909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-1o 8478  df-2o 8479  df-nadd 8676  df-no 27604  df-slt 27605  df-bday 27606  df-sslt 27743  df-scut 27745  df-0s 27786  df-made 27803  df-old 27804  df-left 27806  df-right 27807  df-norec2 27899  df-adds 27910
This theorem is referenced by:  addsproplem7  27925
  Copyright terms: Public domain W3C validator