![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addsproplem5 | Structured version Visualization version GIF version |
Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.) |
Ref | Expression |
---|---|
addsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) |
addspropord.2 | ⊢ (𝜑 → 𝑋 ∈ No ) |
addspropord.3 | ⊢ (𝜑 → 𝑌 ∈ No ) |
addspropord.4 | ⊢ (𝜑 → 𝑍 ∈ No ) |
addspropord.5 | ⊢ (𝜑 → 𝑌 <s 𝑍) |
addsproplem5.6 | ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) |
Ref | Expression |
---|---|
addsproplem5 | ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsproplem.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ∀𝑧 ∈ No (((( bday ‘𝑥) +no ( bday ‘𝑦)) ∪ (( bday ‘𝑥) +no ( bday ‘𝑧))) ∈ ((( bday ‘𝑋) +no ( bday ‘𝑌)) ∪ (( bday ‘𝑋) +no ( bday ‘𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥))))) | |
2 | addspropord.2 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ No ) | |
3 | addspropord.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ No ) | |
4 | 1, 2, 3 | addsproplem3 27444 | . . . 4 ⊢ (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ℎ ∈ ( L ‘𝑌)𝑔 = (𝑋 +s ℎ)}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))) |
5 | 4 | simp3d 1144 | . . 3 ⊢ (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) |
6 | ovex 7438 | . . . . 5 ⊢ (𝑋 +s 𝑌) ∈ V | |
7 | 6 | snid 4663 | . . . 4 ⊢ (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)} |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}) |
9 | addsproplem5.6 | . . . . . . . 8 ⊢ (𝜑 → ( bday ‘𝑍) ∈ ( bday ‘𝑌)) | |
10 | bdayelon 27267 | . . . . . . . . 9 ⊢ ( bday ‘𝑌) ∈ On | |
11 | addspropord.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ∈ No ) | |
12 | oldbday 27384 | . . . . . . . . 9 ⊢ ((( bday ‘𝑌) ∈ On ∧ 𝑍 ∈ No ) → (𝑍 ∈ ( O ‘( bday ‘𝑌)) ↔ ( bday ‘𝑍) ∈ ( bday ‘𝑌))) | |
13 | 10, 11, 12 | sylancr 587 | . . . . . . . 8 ⊢ (𝜑 → (𝑍 ∈ ( O ‘( bday ‘𝑌)) ↔ ( bday ‘𝑍) ∈ ( bday ‘𝑌))) |
14 | 9, 13 | mpbird 256 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ∈ ( O ‘( bday ‘𝑌))) |
15 | addspropord.5 | . . . . . . 7 ⊢ (𝜑 → 𝑌 <s 𝑍) | |
16 | breq2 5151 | . . . . . . . 8 ⊢ (𝑧 = 𝑍 → (𝑌 <s 𝑧 ↔ 𝑌 <s 𝑍)) | |
17 | rightval 27348 | . . . . . . . 8 ⊢ ( R ‘𝑌) = {𝑧 ∈ ( O ‘( bday ‘𝑌)) ∣ 𝑌 <s 𝑧} | |
18 | 16, 17 | elrab2 3685 | . . . . . . 7 ⊢ (𝑍 ∈ ( R ‘𝑌) ↔ (𝑍 ∈ ( O ‘( bday ‘𝑌)) ∧ 𝑌 <s 𝑍)) |
19 | 14, 15, 18 | sylanbrc 583 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ ( R ‘𝑌)) |
20 | eqid 2732 | . . . . . 6 ⊢ (𝑋 +s 𝑍) = (𝑋 +s 𝑍) | |
21 | oveq2 7413 | . . . . . . 7 ⊢ (𝑑 = 𝑍 → (𝑋 +s 𝑑) = (𝑋 +s 𝑍)) | |
22 | 21 | rspceeqv 3632 | . . . . . 6 ⊢ ((𝑍 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑍) = (𝑋 +s 𝑍)) → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
23 | 19, 20, 22 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
24 | ovex 7438 | . . . . . 6 ⊢ (𝑋 +s 𝑍) ∈ V | |
25 | eqeq1 2736 | . . . . . . 7 ⊢ (𝑏 = (𝑋 +s 𝑍) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑍) = (𝑋 +s 𝑑))) | |
26 | 25 | rexbidv 3178 | . . . . . 6 ⊢ (𝑏 = (𝑋 +s 𝑍) → (∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))) |
27 | 24, 26 | elab 3667 | . . . . 5 ⊢ ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)) |
28 | 23, 27 | sylibr 233 | . . . 4 ⊢ (𝜑 → (𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}) |
29 | elun2 4176 | . . . 4 ⊢ ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ (𝜑 → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})) |
31 | 5, 8, 30 | ssltsepcd 27284 | . 2 ⊢ (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍)) |
32 | 3, 2 | addscomd 27440 | . 2 ⊢ (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌)) |
33 | 11, 2 | addscomd 27440 | . 2 ⊢ (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍)) |
34 | 31, 32, 33 | 3brtr4d 5179 | 1 ⊢ (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∃wrex 3070 ∪ cun 3945 {csn 4627 class class class wbr 5147 Oncon0 6361 ‘cfv 6540 (class class class)co 7405 +no cnadd 8660 No csur 27132 <s cslt 27133 bday cbday 27134 <<s csslt 27271 O cold 27327 L cleft 27329 R cright 27330 +s cadds 27432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-nadd 8661 df-no 27135 df-slt 27136 df-bday 27137 df-sslt 27272 df-scut 27274 df-0s 27314 df-made 27331 df-old 27332 df-left 27334 df-right 27335 df-norec2 27422 df-adds 27433 |
This theorem is referenced by: addsproplem7 27448 |
Copyright terms: Public domain | W3C validator |