MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem5 Structured version   Visualization version   GIF version

Theorem addsproplem5 28007
Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
addsproplem5.6 (𝜑 → ( bday 𝑍) ∈ ( bday 𝑌))
Assertion
Ref Expression
addsproplem5 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsproplem.1 . . . . 5 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
2 addspropord.2 . . . . 5 (𝜑𝑋 No )
3 addspropord.3 . . . . 5 (𝜑𝑌 No )
41, 2, 3addsproplem3 28005 . . . 4 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( L ‘𝑌)𝑔 = (𝑋 +s )}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})))
54simp3d 1144 . . 3 (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
6 ovex 7465 . . . . 5 (𝑋 +s 𝑌) ∈ V
76snid 4661 . . . 4 (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}
87a1i 11 . . 3 (𝜑 → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)})
9 addsproplem5.6 . . . . . . . 8 (𝜑 → ( bday 𝑍) ∈ ( bday 𝑌))
10 bdayelon 27822 . . . . . . . . 9 ( bday 𝑌) ∈ On
11 addspropord.4 . . . . . . . . 9 (𝜑𝑍 No )
12 oldbday 27940 . . . . . . . . 9 ((( bday 𝑌) ∈ On ∧ 𝑍 No ) → (𝑍 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑍) ∈ ( bday 𝑌)))
1310, 11, 12sylancr 587 . . . . . . . 8 (𝜑 → (𝑍 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑍) ∈ ( bday 𝑌)))
149, 13mpbird 257 . . . . . . 7 (𝜑𝑍 ∈ ( O ‘( bday 𝑌)))
15 addspropord.5 . . . . . . 7 (𝜑𝑌 <s 𝑍)
16 breq2 5146 . . . . . . . 8 (𝑧 = 𝑍 → (𝑌 <s 𝑧𝑌 <s 𝑍))
17 rightval 27904 . . . . . . . 8 ( R ‘𝑌) = {𝑧 ∈ ( O ‘( bday 𝑌)) ∣ 𝑌 <s 𝑧}
1816, 17elrab2 3694 . . . . . . 7 (𝑍 ∈ ( R ‘𝑌) ↔ (𝑍 ∈ ( O ‘( bday 𝑌)) ∧ 𝑌 <s 𝑍))
1914, 15, 18sylanbrc 583 . . . . . 6 (𝜑𝑍 ∈ ( R ‘𝑌))
20 eqid 2736 . . . . . 6 (𝑋 +s 𝑍) = (𝑋 +s 𝑍)
21 oveq2 7440 . . . . . . 7 (𝑑 = 𝑍 → (𝑋 +s 𝑑) = (𝑋 +s 𝑍))
2221rspceeqv 3644 . . . . . 6 ((𝑍 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑍) = (𝑋 +s 𝑍)) → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
2319, 20, 22sylancl 586 . . . . 5 (𝜑 → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
24 ovex 7465 . . . . . 6 (𝑋 +s 𝑍) ∈ V
25 eqeq1 2740 . . . . . . 7 (𝑏 = (𝑋 +s 𝑍) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑍) = (𝑋 +s 𝑑)))
2625rexbidv 3178 . . . . . 6 (𝑏 = (𝑋 +s 𝑍) → (∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)))
2724, 26elab 3678 . . . . 5 ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
2823, 27sylibr 234 . . . 4 (𝜑 → (𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})
29 elun2 4182 . . . 4 ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
3028, 29syl 17 . . 3 (𝜑 → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
315, 8, 30ssltsepcd 27840 . 2 (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
323, 2addscomd 28001 . 2 (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌))
3311, 2addscomd 28001 . 2 (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍))
3431, 32, 333brtr4d 5174 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2713  wral 3060  wrex 3069  cun 3948  {csn 4625   class class class wbr 5142  Oncon0 6383  cfv 6560  (class class class)co 7432   +no cnadd 8704   No csur 27685   <s cslt 27686   bday cbday 27687   <<s csslt 27826   O cold 27883   L cleft 27885   R cright 27886   +s cadds 27993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-1o 8507  df-2o 8508  df-nadd 8705  df-no 27688  df-slt 27689  df-bday 27690  df-sslt 27827  df-scut 27829  df-0s 27870  df-made 27887  df-old 27888  df-left 27890  df-right 27891  df-norec2 27983  df-adds 27994
This theorem is referenced by:  addsproplem7  28009
  Copyright terms: Public domain W3C validator