MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem5 Structured version   Visualization version   GIF version

Theorem addsproplem5 27937
Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑍 is older than 𝑌. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
addsproplem5.6 (𝜑 → ( bday 𝑍) ∈ ( bday 𝑌))
Assertion
Ref Expression
addsproplem5 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsproplem.1 . . . . 5 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
2 addspropord.2 . . . . 5 (𝜑𝑋 No )
3 addspropord.3 . . . . 5 (𝜑𝑌 No )
41, 2, 3addsproplem3 27935 . . . 4 (𝜑 → ((𝑋 +s 𝑌) ∈ No ∧ ({𝑒 ∣ ∃𝑓 ∈ ( L ‘𝑋)𝑒 = (𝑓 +s 𝑌)} ∪ {𝑔 ∣ ∃ ∈ ( L ‘𝑌)𝑔 = (𝑋 +s )}) <<s {(𝑋 +s 𝑌)} ∧ {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})))
54simp3d 1144 . . 3 (𝜑 → {(𝑋 +s 𝑌)} <<s ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
6 ovex 7443 . . . . 5 (𝑋 +s 𝑌) ∈ V
76snid 4643 . . . 4 (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)}
87a1i 11 . . 3 (𝜑 → (𝑋 +s 𝑌) ∈ {(𝑋 +s 𝑌)})
9 addsproplem5.6 . . . . . . . 8 (𝜑 → ( bday 𝑍) ∈ ( bday 𝑌))
10 bdayelon 27745 . . . . . . . . 9 ( bday 𝑌) ∈ On
11 addspropord.4 . . . . . . . . 9 (𝜑𝑍 No )
12 oldbday 27869 . . . . . . . . 9 ((( bday 𝑌) ∈ On ∧ 𝑍 No ) → (𝑍 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑍) ∈ ( bday 𝑌)))
1310, 11, 12sylancr 587 . . . . . . . 8 (𝜑 → (𝑍 ∈ ( O ‘( bday 𝑌)) ↔ ( bday 𝑍) ∈ ( bday 𝑌)))
149, 13mpbird 257 . . . . . . 7 (𝜑𝑍 ∈ ( O ‘( bday 𝑌)))
15 addspropord.5 . . . . . . 7 (𝜑𝑌 <s 𝑍)
16 elright 27831 . . . . . . 7 (𝑍 ∈ ( R ‘𝑌) ↔ (𝑍 ∈ ( O ‘( bday 𝑌)) ∧ 𝑌 <s 𝑍))
1714, 15, 16sylanbrc 583 . . . . . 6 (𝜑𝑍 ∈ ( R ‘𝑌))
18 eqid 2736 . . . . . 6 (𝑋 +s 𝑍) = (𝑋 +s 𝑍)
19 oveq2 7418 . . . . . . 7 (𝑑 = 𝑍 → (𝑋 +s 𝑑) = (𝑋 +s 𝑍))
2019rspceeqv 3629 . . . . . 6 ((𝑍 ∈ ( R ‘𝑌) ∧ (𝑋 +s 𝑍) = (𝑋 +s 𝑍)) → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
2117, 18, 20sylancl 586 . . . . 5 (𝜑 → ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
22 ovex 7443 . . . . . 6 (𝑋 +s 𝑍) ∈ V
23 eqeq1 2740 . . . . . . 7 (𝑏 = (𝑋 +s 𝑍) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑍) = (𝑋 +s 𝑑)))
2423rexbidv 3165 . . . . . 6 (𝑏 = (𝑋 +s 𝑍) → (∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑)))
2522, 24elab 3663 . . . . 5 ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( R ‘𝑌)(𝑋 +s 𝑍) = (𝑋 +s 𝑑))
2621, 25sylibr 234 . . . 4 (𝜑 → (𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)})
27 elun2 4163 . . . 4 ((𝑋 +s 𝑍) ∈ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
2826, 27syl 17 . . 3 (𝜑 → (𝑋 +s 𝑍) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( R ‘𝑋)𝑎 = (𝑐 +s 𝑌)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( R ‘𝑌)𝑏 = (𝑋 +s 𝑑)}))
295, 8, 28ssltsepcd 27763 . 2 (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
303, 2addscomd 27931 . 2 (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌))
3111, 2addscomd 27931 . 2 (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍))
3229, 30, 313brtr4d 5156 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  cun 3929  {csn 4606   class class class wbr 5124  Oncon0 6357  cfv 6536  (class class class)co 7410   +no cnadd 8682   No csur 27608   <s cslt 27609   bday cbday 27610   <<s csslt 27749   O cold 27808   L cleft 27810   R cright 27811   +s cadds 27923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752  df-0s 27793  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec2 27913  df-adds 27924
This theorem is referenced by:  addsproplem7  27939
  Copyright terms: Public domain W3C validator