MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem4 Structured version   Visualization version   GIF version

Theorem negsproplem4 28063
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem4.1 (𝜑𝐴 No )
negsproplem4.2 (𝜑𝐵 No )
negsproplem4.3 (𝜑𝐴 <s 𝐵)
negsproplem4.4 (𝜑 → ( bday 𝐴) ∈ ( bday 𝐵))
Assertion
Ref Expression
negsproplem4 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 negsproplem.1 . . . . 5 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
2 uncom 4158 . . . . . . . 8 (( bday 𝐴) ∪ ( bday 𝐵)) = (( bday 𝐵) ∪ ( bday 𝐴))
32eleq2i 2833 . . . . . . 7 ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) ↔ (( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)))
43imbi1i 349 . . . . . 6 (((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
542ralbii 3128 . . . . 5 (∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
61, 5sylib 218 . . . 4 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
7 negsproplem4.2 . . . 4 (𝜑𝐵 No )
86, 7negsproplem3 28062 . . 3 (𝜑 → (( -us𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us𝐵)} ∧ {( -us𝐵)} <<s ( -us “ ( L ‘𝐵))))
98simp3d 1145 . 2 (𝜑 → {( -us𝐵)} <<s ( -us “ ( L ‘𝐵)))
10 fvex 6919 . . . 4 ( -us𝐵) ∈ V
1110snid 4662 . . 3 ( -us𝐵) ∈ {( -us𝐵)}
1211a1i 11 . 2 (𝜑 → ( -us𝐵) ∈ {( -us𝐵)})
13 negsfn 28055 . . 3 -us Fn No
14 leftssno 27919 . . 3 ( L ‘𝐵) ⊆ No
15 negsproplem4.4 . . . . 5 (𝜑 → ( bday 𝐴) ∈ ( bday 𝐵))
16 bdayelon 27821 . . . . . 6 ( bday 𝐵) ∈ On
17 negsproplem4.1 . . . . . 6 (𝜑𝐴 No )
18 oldbday 27939 . . . . . 6 ((( bday 𝐵) ∈ On ∧ 𝐴 No ) → (𝐴 ∈ ( O ‘( bday 𝐵)) ↔ ( bday 𝐴) ∈ ( bday 𝐵)))
1916, 17, 18sylancr 587 . . . . 5 (𝜑 → (𝐴 ∈ ( O ‘( bday 𝐵)) ↔ ( bday 𝐴) ∈ ( bday 𝐵)))
2015, 19mpbird 257 . . . 4 (𝜑𝐴 ∈ ( O ‘( bday 𝐵)))
21 negsproplem4.3 . . . 4 (𝜑𝐴 <s 𝐵)
22 breq1 5146 . . . . 5 (𝑎 = 𝐴 → (𝑎 <s 𝐵𝐴 <s 𝐵))
23 leftval 27902 . . . . 5 ( L ‘𝐵) = {𝑎 ∈ ( O ‘( bday 𝐵)) ∣ 𝑎 <s 𝐵}
2422, 23elrab2 3695 . . . 4 (𝐴 ∈ ( L ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday 𝐵)) ∧ 𝐴 <s 𝐵))
2520, 21, 24sylanbrc 583 . . 3 (𝜑𝐴 ∈ ( L ‘𝐵))
26 fnfvima 7253 . . 3 (( -us Fn No ∧ ( L ‘𝐵) ⊆ No 𝐴 ∈ ( L ‘𝐵)) → ( -us𝐴) ∈ ( -us “ ( L ‘𝐵)))
2713, 14, 25, 26mp3an12i 1467 . 2 (𝜑 → ( -us𝐴) ∈ ( -us “ ( L ‘𝐵)))
289, 12, 27ssltsepcd 27839 1 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3061  cun 3949  wss 3951  {csn 4626   class class class wbr 5143  cima 5688  Oncon0 6384   Fn wfn 6556  cfv 6561   No csur 27684   <s cslt 27685   bday cbday 27686   <<s csslt 27825   O cold 27882   L cleft 27884   R cright 27885   -us cnegs 28051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689  df-sslt 27826  df-scut 27828  df-0s 27869  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec 27971  df-negs 28053
This theorem is referenced by:  negsproplem7  28066
  Copyright terms: Public domain W3C validator