![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsproplem4 | Structured version Visualization version GIF version |
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.) |
Ref | Expression |
---|---|
negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
negsproplem4.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
negsproplem4.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
negsproplem4.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
negsproplem4.4 | ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) |
Ref | Expression |
---|---|
negsproplem4 | ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsproplem.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
2 | uncom 4150 | . . . . . . . 8 ⊢ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) = (( bday ‘𝐵) ∪ ( bday ‘𝐴)) | |
3 | 2 | eleq2i 2818 | . . . . . . 7 ⊢ ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) ↔ (( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴))) |
4 | 3 | imbi1i 348 | . . . . . 6 ⊢ (((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥)))) ↔ ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
5 | 4 | 2ralbii 3118 | . . . . 5 ⊢ (∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥)))) ↔ ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
6 | 1, 5 | sylib 217 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
7 | negsproplem4.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
8 | 6, 7 | negsproplem3 28036 | . . 3 ⊢ (𝜑 → (( -us ‘𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us ‘𝐵)} ∧ {( -us ‘𝐵)} <<s ( -us “ ( L ‘𝐵)))) |
9 | 8 | simp3d 1141 | . 2 ⊢ (𝜑 → {( -us ‘𝐵)} <<s ( -us “ ( L ‘𝐵))) |
10 | fvex 6906 | . . . 4 ⊢ ( -us ‘𝐵) ∈ V | |
11 | 10 | snid 4659 | . . 3 ⊢ ( -us ‘𝐵) ∈ {( -us ‘𝐵)} |
12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → ( -us ‘𝐵) ∈ {( -us ‘𝐵)}) |
13 | negsfn 28030 | . . 3 ⊢ -us Fn No | |
14 | leftssno 27901 | . . 3 ⊢ ( L ‘𝐵) ⊆ No | |
15 | negsproplem4.4 | . . . . 5 ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) | |
16 | bdayelon 27803 | . . . . . 6 ⊢ ( bday ‘𝐵) ∈ On | |
17 | negsproplem4.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
18 | oldbday 27921 | . . . . . 6 ⊢ ((( bday ‘𝐵) ∈ On ∧ 𝐴 ∈ No ) → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | |
19 | 16, 17, 18 | sylancr 585 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
20 | 15, 19 | mpbird 256 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ( O ‘( bday ‘𝐵))) |
21 | negsproplem4.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
22 | breq1 5148 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 <s 𝐵 ↔ 𝐴 <s 𝐵)) | |
23 | leftval 27884 | . . . . 5 ⊢ ( L ‘𝐵) = {𝑎 ∈ ( O ‘( bday ‘𝐵)) ∣ 𝑎 <s 𝐵} | |
24 | 22, 23 | elrab2 3683 | . . . 4 ⊢ (𝐴 ∈ ( L ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday ‘𝐵)) ∧ 𝐴 <s 𝐵)) |
25 | 20, 21, 24 | sylanbrc 581 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ( L ‘𝐵)) |
26 | fnfvima 7242 | . . 3 ⊢ (( -us Fn No ∧ ( L ‘𝐵) ⊆ No ∧ 𝐴 ∈ ( L ‘𝐵)) → ( -us ‘𝐴) ∈ ( -us “ ( L ‘𝐵))) | |
27 | 13, 14, 25, 26 | mp3an12i 1462 | . 2 ⊢ (𝜑 → ( -us ‘𝐴) ∈ ( -us “ ( L ‘𝐵))) |
28 | 9, 12, 27 | ssltsepcd 27821 | 1 ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ∀wral 3051 ∪ cun 3944 ⊆ wss 3946 {csn 4623 class class class wbr 5145 “ cima 5677 Oncon0 6368 Fn wfn 6541 ‘cfv 6546 No csur 27666 <s cslt 27667 bday cbday 27668 <<s csslt 27807 O cold 27864 L cleft 27866 R cright 27867 -us cnegs 28026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-1o 8488 df-2o 8489 df-no 27669 df-slt 27670 df-bday 27671 df-sslt 27808 df-scut 27810 df-0s 27851 df-made 27868 df-old 27869 df-left 27871 df-right 27872 df-norec 27949 df-negs 28028 |
This theorem is referenced by: negsproplem7 28040 |
Copyright terms: Public domain | W3C validator |