MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem4 Structured version   Visualization version   GIF version

Theorem negsproplem4 28037
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem4.1 (𝜑𝐴 No )
negsproplem4.2 (𝜑𝐵 No )
negsproplem4.3 (𝜑𝐴 <s 𝐵)
negsproplem4.4 (𝜑 → ( bday 𝐴) ∈ ( bday 𝐵))
Assertion
Ref Expression
negsproplem4 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 negsproplem.1 . . . . 5 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
2 uncom 4150 . . . . . . . 8 (( bday 𝐴) ∪ ( bday 𝐵)) = (( bday 𝐵) ∪ ( bday 𝐴))
32eleq2i 2818 . . . . . . 7 ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) ↔ (( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)))
43imbi1i 348 . . . . . 6 (((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
542ralbii 3118 . . . . 5 (∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
61, 5sylib 217 . . . 4 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
7 negsproplem4.2 . . . 4 (𝜑𝐵 No )
86, 7negsproplem3 28036 . . 3 (𝜑 → (( -us𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us𝐵)} ∧ {( -us𝐵)} <<s ( -us “ ( L ‘𝐵))))
98simp3d 1141 . 2 (𝜑 → {( -us𝐵)} <<s ( -us “ ( L ‘𝐵)))
10 fvex 6906 . . . 4 ( -us𝐵) ∈ V
1110snid 4659 . . 3 ( -us𝐵) ∈ {( -us𝐵)}
1211a1i 11 . 2 (𝜑 → ( -us𝐵) ∈ {( -us𝐵)})
13 negsfn 28030 . . 3 -us Fn No
14 leftssno 27901 . . 3 ( L ‘𝐵) ⊆ No
15 negsproplem4.4 . . . . 5 (𝜑 → ( bday 𝐴) ∈ ( bday 𝐵))
16 bdayelon 27803 . . . . . 6 ( bday 𝐵) ∈ On
17 negsproplem4.1 . . . . . 6 (𝜑𝐴 No )
18 oldbday 27921 . . . . . 6 ((( bday 𝐵) ∈ On ∧ 𝐴 No ) → (𝐴 ∈ ( O ‘( bday 𝐵)) ↔ ( bday 𝐴) ∈ ( bday 𝐵)))
1916, 17, 18sylancr 585 . . . . 5 (𝜑 → (𝐴 ∈ ( O ‘( bday 𝐵)) ↔ ( bday 𝐴) ∈ ( bday 𝐵)))
2015, 19mpbird 256 . . . 4 (𝜑𝐴 ∈ ( O ‘( bday 𝐵)))
21 negsproplem4.3 . . . 4 (𝜑𝐴 <s 𝐵)
22 breq1 5148 . . . . 5 (𝑎 = 𝐴 → (𝑎 <s 𝐵𝐴 <s 𝐵))
23 leftval 27884 . . . . 5 ( L ‘𝐵) = {𝑎 ∈ ( O ‘( bday 𝐵)) ∣ 𝑎 <s 𝐵}
2422, 23elrab2 3683 . . . 4 (𝐴 ∈ ( L ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday 𝐵)) ∧ 𝐴 <s 𝐵))
2520, 21, 24sylanbrc 581 . . 3 (𝜑𝐴 ∈ ( L ‘𝐵))
26 fnfvima 7242 . . 3 (( -us Fn No ∧ ( L ‘𝐵) ⊆ No 𝐴 ∈ ( L ‘𝐵)) → ( -us𝐴) ∈ ( -us “ ( L ‘𝐵)))
2713, 14, 25, 26mp3an12i 1462 . 2 (𝜑 → ( -us𝐴) ∈ ( -us “ ( L ‘𝐵)))
289, 12, 27ssltsepcd 27821 1 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099  wral 3051  cun 3944  wss 3946  {csn 4623   class class class wbr 5145  cima 5677  Oncon0 6368   Fn wfn 6541  cfv 6546   No csur 27666   <s cslt 27667   bday cbday 27668   <<s csslt 27807   O cold 27864   L cleft 27866   R cright 27867   -us cnegs 28026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-1o 8488  df-2o 8489  df-no 27669  df-slt 27670  df-bday 27671  df-sslt 27808  df-scut 27810  df-0s 27851  df-made 27868  df-old 27869  df-left 27871  df-right 27872  df-norec 27949  df-negs 28028
This theorem is referenced by:  negsproplem7  28040
  Copyright terms: Public domain W3C validator