MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem4 Structured version   Visualization version   GIF version

Theorem negsproplem4 27989
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem4.1 (𝜑𝐴 No )
negsproplem4.2 (𝜑𝐵 No )
negsproplem4.3 (𝜑𝐴 <s 𝐵)
negsproplem4.4 (𝜑 → ( bday 𝐴) ∈ ( bday 𝐵))
Assertion
Ref Expression
negsproplem4 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem4
StepHypRef Expression
1 negsproplem.1 . . . . 5 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
2 uncom 4133 . . . . . . . 8 (( bday 𝐴) ∪ ( bday 𝐵)) = (( bday 𝐵) ∪ ( bday 𝐴))
32eleq2i 2826 . . . . . . 7 ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) ↔ (( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)))
43imbi1i 349 . . . . . 6 (((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
542ralbii 3115 . . . . 5 (∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
61, 5sylib 218 . . . 4 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
7 negsproplem4.2 . . . 4 (𝜑𝐵 No )
86, 7negsproplem3 27988 . . 3 (𝜑 → (( -us𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us𝐵)} ∧ {( -us𝐵)} <<s ( -us “ ( L ‘𝐵))))
98simp3d 1144 . 2 (𝜑 → {( -us𝐵)} <<s ( -us “ ( L ‘𝐵)))
10 fvex 6889 . . . 4 ( -us𝐵) ∈ V
1110snid 4638 . . 3 ( -us𝐵) ∈ {( -us𝐵)}
1211a1i 11 . 2 (𝜑 → ( -us𝐵) ∈ {( -us𝐵)})
13 negsfn 27981 . . 3 -us Fn No
14 leftssno 27844 . . 3 ( L ‘𝐵) ⊆ No
15 negsproplem4.4 . . . . 5 (𝜑 → ( bday 𝐴) ∈ ( bday 𝐵))
16 bdayelon 27740 . . . . . 6 ( bday 𝐵) ∈ On
17 negsproplem4.1 . . . . . 6 (𝜑𝐴 No )
18 oldbday 27864 . . . . . 6 ((( bday 𝐵) ∈ On ∧ 𝐴 No ) → (𝐴 ∈ ( O ‘( bday 𝐵)) ↔ ( bday 𝐴) ∈ ( bday 𝐵)))
1916, 17, 18sylancr 587 . . . . 5 (𝜑 → (𝐴 ∈ ( O ‘( bday 𝐵)) ↔ ( bday 𝐴) ∈ ( bday 𝐵)))
2015, 19mpbird 257 . . . 4 (𝜑𝐴 ∈ ( O ‘( bday 𝐵)))
21 negsproplem4.3 . . . 4 (𝜑𝐴 <s 𝐵)
22 elleft 27825 . . . 4 (𝐴 ∈ ( L ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday 𝐵)) ∧ 𝐴 <s 𝐵))
2320, 21, 22sylanbrc 583 . . 3 (𝜑𝐴 ∈ ( L ‘𝐵))
24 fnfvima 7225 . . 3 (( -us Fn No ∧ ( L ‘𝐵) ⊆ No 𝐴 ∈ ( L ‘𝐵)) → ( -us𝐴) ∈ ( -us “ ( L ‘𝐵)))
2513, 14, 23, 24mp3an12i 1467 . 2 (𝜑 → ( -us𝐴) ∈ ( -us “ ( L ‘𝐵)))
269, 12, 25ssltsepcd 27758 1 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3051  cun 3924  wss 3926  {csn 4601   class class class wbr 5119  cima 5657  Oncon0 6352   Fn wfn 6526  cfv 6531   No csur 27603   <s cslt 27604   bday cbday 27605   <<s csslt 27744   O cold 27803   L cleft 27805   R cright 27806   -us cnegs 27977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608  df-sslt 27745  df-scut 27747  df-0s 27788  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-negs 27979
This theorem is referenced by:  negsproplem7  27992
  Copyright terms: Public domain W3C validator