| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsproplem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.) |
| Ref | Expression |
|---|---|
| negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
| negsproplem4.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| negsproplem4.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| negsproplem4.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| negsproplem4.4 | ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) |
| Ref | Expression |
|---|---|
| negsproplem4 | ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsproplem.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
| 2 | uncom 4121 | . . . . . . . 8 ⊢ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) = (( bday ‘𝐵) ∪ ( bday ‘𝐴)) | |
| 3 | 2 | eleq2i 2820 | . . . . . . 7 ⊢ ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) ↔ (( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴))) |
| 4 | 3 | imbi1i 349 | . . . . . 6 ⊢ (((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥)))) ↔ ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
| 5 | 4 | 2ralbii 3108 | . . . . 5 ⊢ (∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥)))) ↔ ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
| 6 | 1, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
| 7 | negsproplem4.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 8 | 6, 7 | negsproplem3 27936 | . . 3 ⊢ (𝜑 → (( -us ‘𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us ‘𝐵)} ∧ {( -us ‘𝐵)} <<s ( -us “ ( L ‘𝐵)))) |
| 9 | 8 | simp3d 1144 | . 2 ⊢ (𝜑 → {( -us ‘𝐵)} <<s ( -us “ ( L ‘𝐵))) |
| 10 | fvex 6871 | . . . 4 ⊢ ( -us ‘𝐵) ∈ V | |
| 11 | 10 | snid 4626 | . . 3 ⊢ ( -us ‘𝐵) ∈ {( -us ‘𝐵)} |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → ( -us ‘𝐵) ∈ {( -us ‘𝐵)}) |
| 13 | negsfn 27929 | . . 3 ⊢ -us Fn No | |
| 14 | leftssno 27792 | . . 3 ⊢ ( L ‘𝐵) ⊆ No | |
| 15 | negsproplem4.4 | . . . . 5 ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) | |
| 16 | bdayelon 27688 | . . . . . 6 ⊢ ( bday ‘𝐵) ∈ On | |
| 17 | negsproplem4.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 18 | oldbday 27812 | . . . . . 6 ⊢ ((( bday ‘𝐵) ∈ On ∧ 𝐴 ∈ No ) → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | |
| 19 | 16, 17, 18 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
| 20 | 15, 19 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ( O ‘( bday ‘𝐵))) |
| 21 | negsproplem4.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 22 | elleft 27773 | . . . 4 ⊢ (𝐴 ∈ ( L ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday ‘𝐵)) ∧ 𝐴 <s 𝐵)) | |
| 23 | 20, 21, 22 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ( L ‘𝐵)) |
| 24 | fnfvima 7207 | . . 3 ⊢ (( -us Fn No ∧ ( L ‘𝐵) ⊆ No ∧ 𝐴 ∈ ( L ‘𝐵)) → ( -us ‘𝐴) ∈ ( -us “ ( L ‘𝐵))) | |
| 25 | 13, 14, 23, 24 | mp3an12i 1467 | . 2 ⊢ (𝜑 → ( -us ‘𝐴) ∈ ( -us “ ( L ‘𝐵))) |
| 26 | 9, 12, 25 | ssltsepcd 27706 | 1 ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∪ cun 3912 ⊆ wss 3914 {csn 4589 class class class wbr 5107 “ cima 5641 Oncon0 6332 Fn wfn 6506 ‘cfv 6511 No csur 27551 <s cslt 27552 bday cbday 27553 <<s csslt 27692 O cold 27751 L cleft 27753 R cright 27754 -us cnegs 27925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-0s 27736 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 df-negs 27927 |
| This theorem is referenced by: negsproplem7 27940 |
| Copyright terms: Public domain | W3C validator |