![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsproplem4 | Structured version Visualization version GIF version |
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is simpler than 𝐵. (Contributed by Scott Fenton, 2-Feb-2025.) |
Ref | Expression |
---|---|
negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
negsproplem4.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
negsproplem4.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
negsproplem4.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
negsproplem4.4 | ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) |
Ref | Expression |
---|---|
negsproplem4 | ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsproplem.1 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
2 | uncom 4153 | . . . . . . . 8 ⊢ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) = (( bday ‘𝐵) ∪ ( bday ‘𝐴)) | |
3 | 2 | eleq2i 2824 | . . . . . . 7 ⊢ ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) ↔ (( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴))) |
4 | 3 | imbi1i 349 | . . . . . 6 ⊢ (((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥)))) ↔ ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
5 | 4 | 2ralbii 3127 | . . . . 5 ⊢ (∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥)))) ↔ ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
6 | 1, 5 | sylib 217 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐵) ∪ ( bday ‘𝐴)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
7 | negsproplem4.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
8 | 6, 7 | negsproplem3 27744 | . . 3 ⊢ (𝜑 → (( -us ‘𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us ‘𝐵)} ∧ {( -us ‘𝐵)} <<s ( -us “ ( L ‘𝐵)))) |
9 | 8 | simp3d 1143 | . 2 ⊢ (𝜑 → {( -us ‘𝐵)} <<s ( -us “ ( L ‘𝐵))) |
10 | fvex 6904 | . . . 4 ⊢ ( -us ‘𝐵) ∈ V | |
11 | 10 | snid 4664 | . . 3 ⊢ ( -us ‘𝐵) ∈ {( -us ‘𝐵)} |
12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → ( -us ‘𝐵) ∈ {( -us ‘𝐵)}) |
13 | negsfn 27738 | . . 3 ⊢ -us Fn No | |
14 | leftssno 27613 | . . 3 ⊢ ( L ‘𝐵) ⊆ No | |
15 | negsproplem4.4 | . . . . 5 ⊢ (𝜑 → ( bday ‘𝐴) ∈ ( bday ‘𝐵)) | |
16 | bdayelon 27515 | . . . . . 6 ⊢ ( bday ‘𝐵) ∈ On | |
17 | negsproplem4.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
18 | oldbday 27633 | . . . . . 6 ⊢ ((( bday ‘𝐵) ∈ On ∧ 𝐴 ∈ No ) → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) | |
19 | 16, 17, 18 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ( O ‘( bday ‘𝐵)) ↔ ( bday ‘𝐴) ∈ ( bday ‘𝐵))) |
20 | 15, 19 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ( O ‘( bday ‘𝐵))) |
21 | negsproplem4.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
22 | breq1 5151 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝑎 <s 𝐵 ↔ 𝐴 <s 𝐵)) | |
23 | leftval 27596 | . . . . 5 ⊢ ( L ‘𝐵) = {𝑎 ∈ ( O ‘( bday ‘𝐵)) ∣ 𝑎 <s 𝐵} | |
24 | 22, 23 | elrab2 3686 | . . . 4 ⊢ (𝐴 ∈ ( L ‘𝐵) ↔ (𝐴 ∈ ( O ‘( bday ‘𝐵)) ∧ 𝐴 <s 𝐵)) |
25 | 20, 21, 24 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ( L ‘𝐵)) |
26 | fnfvima 7237 | . . 3 ⊢ (( -us Fn No ∧ ( L ‘𝐵) ⊆ No ∧ 𝐴 ∈ ( L ‘𝐵)) → ( -us ‘𝐴) ∈ ( -us “ ( L ‘𝐵))) | |
27 | 13, 14, 25, 26 | mp3an12i 1464 | . 2 ⊢ (𝜑 → ( -us ‘𝐴) ∈ ( -us “ ( L ‘𝐵))) |
28 | 9, 12, 27 | ssltsepcd 27533 | 1 ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∀wral 3060 ∪ cun 3946 ⊆ wss 3948 {csn 4628 class class class wbr 5148 “ cima 5679 Oncon0 6364 Fn wfn 6538 ‘cfv 6543 No csur 27380 <s cslt 27381 bday cbday 27382 <<s csslt 27519 O cold 27576 L cleft 27578 R cright 27579 -us cnegs 27734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-1o 8470 df-2o 8471 df-no 27383 df-slt 27384 df-bday 27385 df-sslt 27520 df-scut 27522 df-0s 27563 df-made 27580 df-old 27581 df-left 27583 df-right 27584 df-norec 27661 df-negs 27736 |
This theorem is referenced by: negsproplem7 27748 |
Copyright terms: Public domain | W3C validator |