MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem4 Structured version   Visualization version   GIF version

Theorem addsproplem4 27935
Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑌 is older than 𝑍. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
addsproplem4.6 (𝜑 → ( bday 𝑌) ∈ ( bday 𝑍))
Assertion
Ref Expression
addsproplem4 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem4
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsproplem.1 . . . . . 6 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
2 uncom 4107 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) = ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌)))
32eleq2i 2825 . . . . . . . . 9 (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))))
43imbi1i 349 . . . . . . . 8 ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
54ralbii 3079 . . . . . . 7 (∀𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
652ralbii 3108 . . . . . 6 (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
71, 6sylib 218 . . . . 5 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
8 addspropord.2 . . . . 5 (𝜑𝑋 No )
9 addspropord.4 . . . . 5 (𝜑𝑍 No )
107, 8, 9addsproplem3 27934 . . . 4 (𝜑 → ((𝑋 +s 𝑍) ∈ No ∧ ({𝑎 ∣ ∃𝑐 ∈ ( L ‘𝑋)𝑎 = (𝑐 +s 𝑍)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)} ∧ {(𝑋 +s 𝑍)} <<s ({𝑒 ∣ ∃𝑔 ∈ ( R ‘𝑋)𝑒 = (𝑔 +s 𝑍)} ∪ {𝑓 ∣ ∃ ∈ ( R ‘𝑍)𝑓 = (𝑋 +s )})))
1110simp2d 1143 . . 3 (𝜑 → ({𝑎 ∣ ∃𝑐 ∈ ( L ‘𝑋)𝑎 = (𝑐 +s 𝑍)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)})
12 addsproplem4.6 . . . . . . . 8 (𝜑 → ( bday 𝑌) ∈ ( bday 𝑍))
13 bdayelon 27735 . . . . . . . . 9 ( bday 𝑍) ∈ On
14 addspropord.3 . . . . . . . . 9 (𝜑𝑌 No )
15 oldbday 27866 . . . . . . . . 9 ((( bday 𝑍) ∈ On ∧ 𝑌 No ) → (𝑌 ∈ ( O ‘( bday 𝑍)) ↔ ( bday 𝑌) ∈ ( bday 𝑍)))
1613, 14, 15sylancr 587 . . . . . . . 8 (𝜑 → (𝑌 ∈ ( O ‘( bday 𝑍)) ↔ ( bday 𝑌) ∈ ( bday 𝑍)))
1712, 16mpbird 257 . . . . . . 7 (𝜑𝑌 ∈ ( O ‘( bday 𝑍)))
18 addspropord.5 . . . . . . 7 (𝜑𝑌 <s 𝑍)
19 elleft 27826 . . . . . . 7 (𝑌 ∈ ( L ‘𝑍) ↔ (𝑌 ∈ ( O ‘( bday 𝑍)) ∧ 𝑌 <s 𝑍))
2017, 18, 19sylanbrc 583 . . . . . 6 (𝜑𝑌 ∈ ( L ‘𝑍))
21 eqid 2733 . . . . . 6 (𝑋 +s 𝑌) = (𝑋 +s 𝑌)
22 oveq2 7363 . . . . . . 7 (𝑑 = 𝑌 → (𝑋 +s 𝑑) = (𝑋 +s 𝑌))
2322rspceeqv 3596 . . . . . 6 ((𝑌 ∈ ( L ‘𝑍) ∧ (𝑋 +s 𝑌) = (𝑋 +s 𝑌)) → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑌) = (𝑋 +s 𝑑))
2420, 21, 23sylancl 586 . . . . 5 (𝜑 → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑌) = (𝑋 +s 𝑑))
25 ovex 7388 . . . . . 6 (𝑋 +s 𝑌) ∈ V
26 eqeq1 2737 . . . . . . 7 (𝑏 = (𝑋 +s 𝑌) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑌) = (𝑋 +s 𝑑)))
2726rexbidv 3157 . . . . . 6 (𝑏 = (𝑋 +s 𝑌) → (∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑌) = (𝑋 +s 𝑑)))
2825, 27elab 3631 . . . . 5 ((𝑋 +s 𝑌) ∈ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑌) = (𝑋 +s 𝑑))
2924, 28sylibr 234 . . . 4 (𝜑 → (𝑋 +s 𝑌) ∈ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)})
30 elun2 4132 . . . 4 ((𝑋 +s 𝑌) ∈ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑌) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( L ‘𝑋)𝑎 = (𝑐 +s 𝑍)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)}))
3129, 30syl 17 . . 3 (𝜑 → (𝑋 +s 𝑌) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( L ‘𝑋)𝑎 = (𝑐 +s 𝑍)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)}))
32 ovex 7388 . . . . 5 (𝑋 +s 𝑍) ∈ V
3332snid 4616 . . . 4 (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)}
3433a1i 11 . . 3 (𝜑 → (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)})
3511, 31, 34ssltsepcd 27755 . 2 (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
3614, 8addscomd 27930 . 2 (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌))
379, 8addscomd 27930 . 2 (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍))
3835, 36, 373brtr4d 5127 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  cun 3896  {csn 4577   class class class wbr 5095  Oncon0 6314  cfv 6489  (class class class)co 7355   +no cnadd 8589   No csur 27598   <s cslt 27599   bday cbday 27600   <<s csslt 27740   O cold 27804   L cleft 27806   R cright 27807   +s cadds 27922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27601  df-slt 27602  df-bday 27603  df-sslt 27741  df-scut 27743  df-0s 27788  df-made 27808  df-old 27809  df-left 27811  df-right 27812  df-norec2 27912  df-adds 27923
This theorem is referenced by:  addsproplem7  27938
  Copyright terms: Public domain W3C validator