MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsproplem4 Structured version   Visualization version   GIF version

Theorem addsproplem4 28023
Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when 𝑌 is older than 𝑍. (Contributed by Scott Fenton, 21-Jan-2025.)
Hypotheses
Ref Expression
addsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
addspropord.2 (𝜑𝑋 No )
addspropord.3 (𝜑𝑌 No )
addspropord.4 (𝜑𝑍 No )
addspropord.5 (𝜑𝑌 <s 𝑍)
addsproplem4.6 (𝜑 → ( bday 𝑌) ∈ ( bday 𝑍))
Assertion
Ref Expression
addsproplem4 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Distinct variable groups:   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem addsproplem4
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addsproplem.1 . . . . . 6 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
2 uncom 4181 . . . . . . . . . 10 ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) = ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌)))
32eleq2i 2836 . . . . . . . . 9 (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) ↔ ((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))))
43imbi1i 349 . . . . . . . 8 ((((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
54ralbii 3099 . . . . . . 7 (∀𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
652ralbii 3134 . . . . . 6 (∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑌)) ∪ (( bday 𝑋) +no ( bday 𝑍))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))) ↔ ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
71, 6sylib 218 . . . . 5 (𝜑 → ∀𝑥 No 𝑦 No 𝑧 No (((( bday 𝑥) +no ( bday 𝑦)) ∪ (( bday 𝑥) +no ( bday 𝑧))) ∈ ((( bday 𝑋) +no ( bday 𝑍)) ∪ (( bday 𝑋) +no ( bday 𝑌))) → ((𝑥 +s 𝑦) ∈ No ∧ (𝑦 <s 𝑧 → (𝑦 +s 𝑥) <s (𝑧 +s 𝑥)))))
8 addspropord.2 . . . . 5 (𝜑𝑋 No )
9 addspropord.4 . . . . 5 (𝜑𝑍 No )
107, 8, 9addsproplem3 28022 . . . 4 (𝜑 → ((𝑋 +s 𝑍) ∈ No ∧ ({𝑎 ∣ ∃𝑐 ∈ ( L ‘𝑋)𝑎 = (𝑐 +s 𝑍)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)} ∧ {(𝑋 +s 𝑍)} <<s ({𝑒 ∣ ∃𝑔 ∈ ( R ‘𝑋)𝑒 = (𝑔 +s 𝑍)} ∪ {𝑓 ∣ ∃ ∈ ( R ‘𝑍)𝑓 = (𝑋 +s )})))
1110simp2d 1143 . . 3 (𝜑 → ({𝑎 ∣ ∃𝑐 ∈ ( L ‘𝑋)𝑎 = (𝑐 +s 𝑍)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)}) <<s {(𝑋 +s 𝑍)})
12 addsproplem4.6 . . . . . . . 8 (𝜑 → ( bday 𝑌) ∈ ( bday 𝑍))
13 bdayelon 27839 . . . . . . . . 9 ( bday 𝑍) ∈ On
14 addspropord.3 . . . . . . . . 9 (𝜑𝑌 No )
15 oldbday 27957 . . . . . . . . 9 ((( bday 𝑍) ∈ On ∧ 𝑌 No ) → (𝑌 ∈ ( O ‘( bday 𝑍)) ↔ ( bday 𝑌) ∈ ( bday 𝑍)))
1613, 14, 15sylancr 586 . . . . . . . 8 (𝜑 → (𝑌 ∈ ( O ‘( bday 𝑍)) ↔ ( bday 𝑌) ∈ ( bday 𝑍)))
1712, 16mpbird 257 . . . . . . 7 (𝜑𝑌 ∈ ( O ‘( bday 𝑍)))
18 addspropord.5 . . . . . . 7 (𝜑𝑌 <s 𝑍)
19 breq1 5169 . . . . . . . 8 (𝑦 = 𝑌 → (𝑦 <s 𝑍𝑌 <s 𝑍))
20 leftval 27920 . . . . . . . 8 ( L ‘𝑍) = {𝑦 ∈ ( O ‘( bday 𝑍)) ∣ 𝑦 <s 𝑍}
2119, 20elrab2 3711 . . . . . . 7 (𝑌 ∈ ( L ‘𝑍) ↔ (𝑌 ∈ ( O ‘( bday 𝑍)) ∧ 𝑌 <s 𝑍))
2217, 18, 21sylanbrc 582 . . . . . 6 (𝜑𝑌 ∈ ( L ‘𝑍))
23 eqid 2740 . . . . . 6 (𝑋 +s 𝑌) = (𝑋 +s 𝑌)
24 oveq2 7456 . . . . . . 7 (𝑑 = 𝑌 → (𝑋 +s 𝑑) = (𝑋 +s 𝑌))
2524rspceeqv 3658 . . . . . 6 ((𝑌 ∈ ( L ‘𝑍) ∧ (𝑋 +s 𝑌) = (𝑋 +s 𝑌)) → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑌) = (𝑋 +s 𝑑))
2622, 23, 25sylancl 585 . . . . 5 (𝜑 → ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑌) = (𝑋 +s 𝑑))
27 ovex 7481 . . . . . 6 (𝑋 +s 𝑌) ∈ V
28 eqeq1 2744 . . . . . . 7 (𝑏 = (𝑋 +s 𝑌) → (𝑏 = (𝑋 +s 𝑑) ↔ (𝑋 +s 𝑌) = (𝑋 +s 𝑑)))
2928rexbidv 3185 . . . . . 6 (𝑏 = (𝑋 +s 𝑌) → (∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑) ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑌) = (𝑋 +s 𝑑)))
3027, 29elab 3694 . . . . 5 ((𝑋 +s 𝑌) ∈ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)} ↔ ∃𝑑 ∈ ( L ‘𝑍)(𝑋 +s 𝑌) = (𝑋 +s 𝑑))
3126, 30sylibr 234 . . . 4 (𝜑 → (𝑋 +s 𝑌) ∈ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)})
32 elun2 4206 . . . 4 ((𝑋 +s 𝑌) ∈ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)} → (𝑋 +s 𝑌) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( L ‘𝑋)𝑎 = (𝑐 +s 𝑍)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)}))
3331, 32syl 17 . . 3 (𝜑 → (𝑋 +s 𝑌) ∈ ({𝑎 ∣ ∃𝑐 ∈ ( L ‘𝑋)𝑎 = (𝑐 +s 𝑍)} ∪ {𝑏 ∣ ∃𝑑 ∈ ( L ‘𝑍)𝑏 = (𝑋 +s 𝑑)}))
34 ovex 7481 . . . . 5 (𝑋 +s 𝑍) ∈ V
3534snid 4684 . . . 4 (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)}
3635a1i 11 . . 3 (𝜑 → (𝑋 +s 𝑍) ∈ {(𝑋 +s 𝑍)})
3711, 33, 36ssltsepcd 27857 . 2 (𝜑 → (𝑋 +s 𝑌) <s (𝑋 +s 𝑍))
3814, 8addscomd 28018 . 2 (𝜑 → (𝑌 +s 𝑋) = (𝑋 +s 𝑌))
399, 8addscomd 28018 . 2 (𝜑 → (𝑍 +s 𝑋) = (𝑋 +s 𝑍))
4037, 38, 393brtr4d 5198 1 (𝜑 → (𝑌 +s 𝑋) <s (𝑍 +s 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  cun 3974  {csn 4648   class class class wbr 5166  Oncon0 6395  cfv 6573  (class class class)co 7448   +no cnadd 8721   No csur 27702   <s cslt 27703   bday cbday 27704   <<s csslt 27843   O cold 27900   L cleft 27902   R cright 27903   +s cadds 28010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-0s 27887  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011
This theorem is referenced by:  addsproplem7  28026
  Copyright terms: Public domain W3C validator