MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem6 Structured version   Visualization version   GIF version

Theorem negsproplem6 27939
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is the same age as 𝐵. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem4.1 (𝜑𝐴 No )
negsproplem4.2 (𝜑𝐵 No )
negsproplem4.3 (𝜑𝐴 <s 𝐵)
negsproplem6.4 (𝜑 → ( bday 𝐴) = ( bday 𝐵))
Assertion
Ref Expression
negsproplem6 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem6
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 negsproplem4.1 . . 3 (𝜑𝐴 No )
2 negsproplem4.2 . . 3 (𝜑𝐵 No )
3 negsproplem6.4 . . 3 (𝜑 → ( bday 𝐴) = ( bday 𝐵))
4 negsproplem4.3 . . 3 (𝜑𝐴 <s 𝐵)
5 nodense 27604 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑑 No (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))
61, 2, 3, 4, 5syl22anc 838 . 2 (𝜑 → ∃𝑑 No (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))
7 negsproplem.1 . . . . . . 7 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
8 uncom 4121 . . . . . . . . . 10 (( bday 𝐴) ∪ ( bday 𝐵)) = (( bday 𝐵) ∪ ( bday 𝐴))
98eleq2i 2820 . . . . . . . . 9 ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) ↔ (( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)))
109imbi1i 349 . . . . . . . 8 (((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
11102ralbii 3108 . . . . . . 7 (∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
127, 11sylib 218 . . . . . 6 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
1312, 2negsproplem3 27936 . . . . 5 (𝜑 → (( -us𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us𝐵)} ∧ {( -us𝐵)} <<s ( -us “ ( L ‘𝐵))))
1413simp1d 1142 . . . 4 (𝜑 → ( -us𝐵) ∈ No )
1514adantr 480 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐵) ∈ No )
167adantr 480 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
17 simprl 770 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 No )
18 0sno 27738 . . . . . 6 0s No
1918a1i 11 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 0s No )
20 bday0s 27740 . . . . . . . 8 ( bday ‘ 0s ) = ∅
2120uneq2i 4128 . . . . . . 7 (( bday 𝑑) ∪ ( bday ‘ 0s )) = (( bday 𝑑) ∪ ∅)
22 un0 4357 . . . . . . 7 (( bday 𝑑) ∪ ∅) = ( bday 𝑑)
2321, 22eqtri 2752 . . . . . 6 (( bday 𝑑) ∪ ( bday ‘ 0s )) = ( bday 𝑑)
24 simprr1 1222 . . . . . . 7 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( bday 𝑑) ∈ ( bday 𝐴))
25 elun1 4145 . . . . . . 7 (( bday 𝑑) ∈ ( bday 𝐴) → ( bday 𝑑) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2624, 25syl 17 . . . . . 6 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( bday 𝑑) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2723, 26eqeltrid 2832 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → (( bday 𝑑) ∪ ( bday ‘ 0s )) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2816, 17, 19, 27negsproplem1 27934 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → (( -us𝑑) ∈ No ∧ (𝑑 <s 0s → ( -us ‘ 0s ) <s ( -us𝑑))))
2928simpld 494 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝑑) ∈ No )
307, 1negsproplem3 27936 . . . . 5 (𝜑 → (( -us𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)} ∧ {( -us𝐴)} <<s ( -us “ ( L ‘𝐴))))
3130simp1d 1142 . . . 4 (𝜑 → ( -us𝐴) ∈ No )
3231adantr 480 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐴) ∈ No )
3313simp3d 1144 . . . . 5 (𝜑 → {( -us𝐵)} <<s ( -us “ ( L ‘𝐵)))
3433adantr 480 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → {( -us𝐵)} <<s ( -us “ ( L ‘𝐵)))
35 fvex 6871 . . . . . 6 ( -us𝐵) ∈ V
3635snid 4626 . . . . 5 ( -us𝐵) ∈ {( -us𝐵)}
3736a1i 11 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐵) ∈ {( -us𝐵)})
38 negsfn 27929 . . . . 5 -us Fn No
39 leftssno 27792 . . . . 5 ( L ‘𝐵) ⊆ No
40 bdayelon 27688 . . . . . . . . 9 ( bday 𝐴) ∈ On
41 oldbday 27812 . . . . . . . . 9 ((( bday 𝐴) ∈ On ∧ 𝑑 No ) → (𝑑 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝑑) ∈ ( bday 𝐴)))
4240, 17, 41sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → (𝑑 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝑑) ∈ ( bday 𝐴)))
4324, 42mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 ∈ ( O ‘( bday 𝐴)))
443fveq2d 6862 . . . . . . . 8 (𝜑 → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
4544adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
4643, 45eleqtrd 2830 . . . . . 6 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 ∈ ( O ‘( bday 𝐵)))
47 simprr3 1224 . . . . . 6 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 <s 𝐵)
48 elleft 27773 . . . . . 6 (𝑑 ∈ ( L ‘𝐵) ↔ (𝑑 ∈ ( O ‘( bday 𝐵)) ∧ 𝑑 <s 𝐵))
4946, 47, 48sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 ∈ ( L ‘𝐵))
50 fnfvima 7207 . . . . 5 (( -us Fn No ∧ ( L ‘𝐵) ⊆ No 𝑑 ∈ ( L ‘𝐵)) → ( -us𝑑) ∈ ( -us “ ( L ‘𝐵)))
5138, 39, 49, 50mp3an12i 1467 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝑑) ∈ ( -us “ ( L ‘𝐵)))
5234, 37, 51ssltsepcd 27706 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐵) <s ( -us𝑑))
5330simp2d 1143 . . . . 5 (𝜑 → ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)})
5453adantr 480 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)})
55 rightssno 27793 . . . . 5 ( R ‘𝐴) ⊆ No
56 simprr2 1223 . . . . . 6 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝐴 <s 𝑑)
57 elright 27774 . . . . . 6 (𝑑 ∈ ( R ‘𝐴) ↔ (𝑑 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑑))
5843, 56, 57sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 ∈ ( R ‘𝐴))
59 fnfvima 7207 . . . . 5 (( -us Fn No ∧ ( R ‘𝐴) ⊆ No 𝑑 ∈ ( R ‘𝐴)) → ( -us𝑑) ∈ ( -us “ ( R ‘𝐴)))
6038, 55, 58, 59mp3an12i 1467 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝑑) ∈ ( -us “ ( R ‘𝐴)))
61 fvex 6871 . . . . . 6 ( -us𝐴) ∈ V
6261snid 4626 . . . . 5 ( -us𝐴) ∈ {( -us𝐴)}
6362a1i 11 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐴) ∈ {( -us𝐴)})
6454, 60, 63ssltsepcd 27706 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝑑) <s ( -us𝐴))
6515, 29, 32, 52, 64slttrd 27671 . 2 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐵) <s ( -us𝐴))
666, 65rexlimddv 3140 1 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cun 3912  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cima 5641  Oncon0 6332   Fn wfn 6506  cfv 6511   No csur 27551   <s cslt 27552   bday cbday 27553   <<s csslt 27692   0s c0s 27734   O cold 27751   L cleft 27753   R cright 27754   -us cnegs 27925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-negs 27927
This theorem is referenced by:  negsproplem7  27940
  Copyright terms: Public domain W3C validator