| Step | Hyp | Ref
| Expression |
| 1 | | negsproplem4.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ No
) |
| 2 | | negsproplem4.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ No
) |
| 3 | | negsproplem6.4 |
. . 3
⊢ (𝜑 → (
bday ‘𝐴) =
( bday ‘𝐵)) |
| 4 | | negsproplem4.3 |
. . 3
⊢ (𝜑 → 𝐴 <s 𝐵) |
| 5 | | nodense 27661 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑑 ∈ No
(( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵)) |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 |
. 2
⊢ (𝜑 → ∃𝑑 ∈ No
(( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵)) |
| 7 | | negsproplem.1 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝐴) ∪ ( bday
‘𝐵)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 8 | | uncom 4138 |
. . . . . . . . . 10
⊢ (( bday ‘𝐴) ∪ ( bday
‘𝐵)) = (( bday ‘𝐵) ∪ ( bday
‘𝐴)) |
| 9 | 8 | eleq2i 2827 |
. . . . . . . . 9
⊢ ((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝐴) ∪ ( bday
‘𝐵)) ↔
(( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝐵) ∪ ( bday
‘𝐴))) |
| 10 | 9 | imbi1i 349 |
. . . . . . . 8
⊢ (((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝐴) ∪ ( bday
‘𝐵)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥)))) ↔
((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝐵) ∪ ( bday
‘𝐴)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 11 | 10 | 2ralbii 3116 |
. . . . . . 7
⊢
(∀𝑥 ∈
No ∀𝑦 ∈ No
((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝐴) ∪ ( bday
‘𝐵)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥)))) ↔
∀𝑥 ∈ No ∀𝑦 ∈ No
((( bday ‘𝑥) ∪ ( bday
‘𝑦)) ∈
(( bday ‘𝐵) ∪ ( bday
‘𝐴)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 12 | 7, 11 | sylib 218 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝐵) ∪ ( bday
‘𝐴)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 13 | 12, 2 | negsproplem3 27993 |
. . . . 5
⊢ (𝜑 → (( -us
‘𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us
‘𝐵)} ∧ {(
-us ‘𝐵)}
<<s ( -us “ ( L ‘𝐵)))) |
| 14 | 13 | simp1d 1142 |
. . . 4
⊢ (𝜑 → ( -us
‘𝐵) ∈ No ) |
| 15 | 14 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝐵) ∈
No ) |
| 16 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ∀𝑥 ∈ No
∀𝑦 ∈ No ((( bday ‘𝑥) ∪ (
bday ‘𝑦))
∈ (( bday ‘𝐴) ∪ ( bday
‘𝐵)) → ((
-us ‘𝑥)
∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us
‘𝑥))))) |
| 17 | | simprl 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → 𝑑 ∈ No
) |
| 18 | | 0sno 27795 |
. . . . . 6
⊢
0s ∈ No |
| 19 | 18 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → 0s ∈ No ) |
| 20 | | bday0s 27797 |
. . . . . . . 8
⊢ ( bday ‘ 0s ) = ∅ |
| 21 | 20 | uneq2i 4145 |
. . . . . . 7
⊢ (( bday ‘𝑑) ∪ ( bday
‘ 0s )) = (( bday
‘𝑑) ∪
∅) |
| 22 | | un0 4374 |
. . . . . . 7
⊢ (( bday ‘𝑑) ∪ ∅) = (
bday ‘𝑑) |
| 23 | 21, 22 | eqtri 2759 |
. . . . . 6
⊢ (( bday ‘𝑑) ∪ ( bday
‘ 0s )) = ( bday
‘𝑑) |
| 24 | | simprr1 1222 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( bday
‘𝑑) ∈
( bday ‘𝐴)) |
| 25 | | elun1 4162 |
. . . . . . 7
⊢ (( bday ‘𝑑) ∈ ( bday
‘𝐴) →
( bday ‘𝑑) ∈ (( bday
‘𝐴) ∪
( bday ‘𝐵))) |
| 26 | 24, 25 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( bday
‘𝑑) ∈
(( bday ‘𝐴) ∪ ( bday
‘𝐵))) |
| 27 | 23, 26 | eqeltrid 2839 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → (( bday
‘𝑑) ∪
( bday ‘ 0s )) ∈ (( bday ‘𝐴) ∪ ( bday
‘𝐵))) |
| 28 | 16, 17, 19, 27 | negsproplem1 27991 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → (( -us ‘𝑑) ∈
No ∧ (𝑑 <s
0s → ( -us ‘ 0s ) <s (
-us ‘𝑑)))) |
| 29 | 28 | simpld 494 |
. . 3
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝑑) ∈
No ) |
| 30 | 7, 1 | negsproplem3 27993 |
. . . . 5
⊢ (𝜑 → (( -us
‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us
‘𝐴)} ∧ {(
-us ‘𝐴)}
<<s ( -us “ ( L ‘𝐴)))) |
| 31 | 30 | simp1d 1142 |
. . . 4
⊢ (𝜑 → ( -us
‘𝐴) ∈ No ) |
| 32 | 31 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝐴) ∈
No ) |
| 33 | 13 | simp3d 1144 |
. . . . 5
⊢ (𝜑 → {( -us
‘𝐵)} <<s (
-us “ ( L ‘𝐵))) |
| 34 | 33 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → {( -us ‘𝐵)} <<s ( -us
“ ( L ‘𝐵))) |
| 35 | | fvex 6894 |
. . . . . 6
⊢ (
-us ‘𝐵)
∈ V |
| 36 | 35 | snid 4643 |
. . . . 5
⊢ (
-us ‘𝐵)
∈ {( -us ‘𝐵)} |
| 37 | 36 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝐵) ∈ {( -us
‘𝐵)}) |
| 38 | | negsfn 27986 |
. . . . 5
⊢
-us Fn No |
| 39 | | leftssno 27849 |
. . . . 5
⊢ ( L
‘𝐵) ⊆ No |
| 40 | | bdayelon 27745 |
. . . . . . . . 9
⊢ ( bday ‘𝐴) ∈ On |
| 41 | | oldbday 27869 |
. . . . . . . . 9
⊢ ((( bday ‘𝐴) ∈ On ∧ 𝑑 ∈ No )
→ (𝑑 ∈ ( O
‘( bday ‘𝐴)) ↔ ( bday
‘𝑑) ∈
( bday ‘𝐴))) |
| 42 | 40, 17, 41 | sylancr 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → (𝑑 ∈ ( O ‘(
bday ‘𝐴))
↔ ( bday ‘𝑑) ∈ ( bday
‘𝐴))) |
| 43 | 24, 42 | mpbird 257 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → 𝑑 ∈ ( O ‘(
bday ‘𝐴))) |
| 44 | 3 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝜑 → ( O ‘( bday ‘𝐴)) = ( O ‘( bday
‘𝐵))) |
| 45 | 44 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( O ‘( bday ‘𝐴)) = ( O ‘( bday
‘𝐵))) |
| 46 | 43, 45 | eleqtrd 2837 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → 𝑑 ∈ ( O ‘(
bday ‘𝐵))) |
| 47 | | simprr3 1224 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → 𝑑 <s 𝐵) |
| 48 | | elleft 27830 |
. . . . . 6
⊢ (𝑑 ∈ ( L ‘𝐵) ↔ (𝑑 ∈ ( O ‘(
bday ‘𝐵))
∧ 𝑑 <s 𝐵)) |
| 49 | 46, 47, 48 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → 𝑑 ∈ ( L ‘𝐵)) |
| 50 | | fnfvima 7230 |
. . . . 5
⊢ ((
-us Fn No ∧ ( L ‘𝐵) ⊆
No ∧ 𝑑 ∈ (
L ‘𝐵)) → (
-us ‘𝑑)
∈ ( -us “ ( L ‘𝐵))) |
| 51 | 38, 39, 49, 50 | mp3an12i 1467 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝑑) ∈ ( -us
“ ( L ‘𝐵))) |
| 52 | 34, 37, 51 | ssltsepcd 27763 |
. . 3
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝐵) <s ( -us
‘𝑑)) |
| 53 | 30 | simp2d 1143 |
. . . . 5
⊢ (𝜑 → ( -us “ (
R ‘𝐴)) <<s {(
-us ‘𝐴)}) |
| 54 | 53 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us “ ( R
‘𝐴)) <<s {(
-us ‘𝐴)}) |
| 55 | | rightssno 27850 |
. . . . 5
⊢ ( R
‘𝐴) ⊆ No |
| 56 | | simprr2 1223 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → 𝐴 <s 𝑑) |
| 57 | | elright 27831 |
. . . . . 6
⊢ (𝑑 ∈ ( R ‘𝐴) ↔ (𝑑 ∈ ( O ‘(
bday ‘𝐴))
∧ 𝐴 <s 𝑑)) |
| 58 | 43, 56, 57 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → 𝑑 ∈ ( R ‘𝐴)) |
| 59 | | fnfvima 7230 |
. . . . 5
⊢ ((
-us Fn No ∧ ( R ‘𝐴) ⊆
No ∧ 𝑑 ∈ (
R ‘𝐴)) → (
-us ‘𝑑)
∈ ( -us “ ( R ‘𝐴))) |
| 60 | 38, 55, 58, 59 | mp3an12i 1467 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝑑) ∈ ( -us
“ ( R ‘𝐴))) |
| 61 | | fvex 6894 |
. . . . . 6
⊢ (
-us ‘𝐴)
∈ V |
| 62 | 61 | snid 4643 |
. . . . 5
⊢ (
-us ‘𝐴)
∈ {( -us ‘𝐴)} |
| 63 | 62 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝐴) ∈ {( -us
‘𝐴)}) |
| 64 | 54, 60, 63 | ssltsepcd 27763 |
. . 3
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝑑) <s ( -us
‘𝐴)) |
| 65 | 15, 29, 32, 52, 64 | slttrd 27728 |
. 2
⊢ ((𝜑 ∧ (𝑑 ∈ No
∧ (( bday ‘𝑑) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑑 ∧ 𝑑 <s 𝐵))) → ( -us ‘𝐵) <s ( -us
‘𝐴)) |
| 66 | 6, 65 | rexlimddv 3148 |
1
⊢ (𝜑 → ( -us
‘𝐵) <s (
-us ‘𝐴)) |