MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem6 Structured version   Visualization version   GIF version

Theorem negsproplem6 27747
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐴 is the same age as 𝐵. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem4.1 (𝜑𝐴 No )
negsproplem4.2 (𝜑𝐵 No )
negsproplem4.3 (𝜑𝐴 <s 𝐵)
negsproplem6.4 (𝜑 → ( bday 𝐴) = ( bday 𝐵))
Assertion
Ref Expression
negsproplem6 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem6
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 negsproplem4.1 . . 3 (𝜑𝐴 No )
2 negsproplem4.2 . . 3 (𝜑𝐵 No )
3 negsproplem6.4 . . 3 (𝜑 → ( bday 𝐴) = ( bday 𝐵))
4 negsproplem4.3 . . 3 (𝜑𝐴 <s 𝐵)
5 nodense 27432 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑑 No (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))
61, 2, 3, 4, 5syl22anc 836 . 2 (𝜑 → ∃𝑑 No (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))
7 negsproplem.1 . . . . . . 7 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
8 uncom 4153 . . . . . . . . . 10 (( bday 𝐴) ∪ ( bday 𝐵)) = (( bday 𝐵) ∪ ( bday 𝐴))
98eleq2i 2824 . . . . . . . . 9 ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) ↔ (( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)))
109imbi1i 349 . . . . . . . 8 (((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
11102ralbii 3127 . . . . . . 7 (∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))) ↔ ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
127, 11sylib 217 . . . . . 6 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐵) ∪ ( bday 𝐴)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
1312, 2negsproplem3 27744 . . . . 5 (𝜑 → (( -us𝐵) ∈ No ∧ ( -us “ ( R ‘𝐵)) <<s {( -us𝐵)} ∧ {( -us𝐵)} <<s ( -us “ ( L ‘𝐵))))
1413simp1d 1141 . . . 4 (𝜑 → ( -us𝐵) ∈ No )
1514adantr 480 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐵) ∈ No )
167adantr 480 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
17 simprl 768 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 No )
18 0sno 27565 . . . . . 6 0s No
1918a1i 11 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 0s No )
20 bday0s 27567 . . . . . . . 8 ( bday ‘ 0s ) = ∅
2120uneq2i 4160 . . . . . . 7 (( bday 𝑑) ∪ ( bday ‘ 0s )) = (( bday 𝑑) ∪ ∅)
22 un0 4390 . . . . . . 7 (( bday 𝑑) ∪ ∅) = ( bday 𝑑)
2321, 22eqtri 2759 . . . . . 6 (( bday 𝑑) ∪ ( bday ‘ 0s )) = ( bday 𝑑)
24 simprr1 1220 . . . . . . 7 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( bday 𝑑) ∈ ( bday 𝐴))
25 elun1 4176 . . . . . . 7 (( bday 𝑑) ∈ ( bday 𝐴) → ( bday 𝑑) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2624, 25syl 17 . . . . . 6 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( bday 𝑑) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2723, 26eqeltrid 2836 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → (( bday 𝑑) ∪ ( bday ‘ 0s )) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2816, 17, 19, 27negsproplem1 27742 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → (( -us𝑑) ∈ No ∧ (𝑑 <s 0s → ( -us ‘ 0s ) <s ( -us𝑑))))
2928simpld 494 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝑑) ∈ No )
307, 1negsproplem3 27744 . . . . 5 (𝜑 → (( -us𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)} ∧ {( -us𝐴)} <<s ( -us “ ( L ‘𝐴))))
3130simp1d 1141 . . . 4 (𝜑 → ( -us𝐴) ∈ No )
3231adantr 480 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐴) ∈ No )
3313simp3d 1143 . . . . 5 (𝜑 → {( -us𝐵)} <<s ( -us “ ( L ‘𝐵)))
3433adantr 480 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → {( -us𝐵)} <<s ( -us “ ( L ‘𝐵)))
35 fvex 6904 . . . . . 6 ( -us𝐵) ∈ V
3635snid 4664 . . . . 5 ( -us𝐵) ∈ {( -us𝐵)}
3736a1i 11 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐵) ∈ {( -us𝐵)})
38 negsfn 27738 . . . . 5 -us Fn No
39 leftssno 27613 . . . . 5 ( L ‘𝐵) ⊆ No
40 bdayelon 27515 . . . . . . . . 9 ( bday 𝐴) ∈ On
41 oldbday 27633 . . . . . . . . 9 ((( bday 𝐴) ∈ On ∧ 𝑑 No ) → (𝑑 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝑑) ∈ ( bday 𝐴)))
4240, 17, 41sylancr 586 . . . . . . . 8 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → (𝑑 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝑑) ∈ ( bday 𝐴)))
4324, 42mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 ∈ ( O ‘( bday 𝐴)))
443fveq2d 6895 . . . . . . . 8 (𝜑 → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
4544adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( O ‘( bday 𝐴)) = ( O ‘( bday 𝐵)))
4643, 45eleqtrd 2834 . . . . . 6 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 ∈ ( O ‘( bday 𝐵)))
47 simprr3 1222 . . . . . 6 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 <s 𝐵)
48 leftval 27596 . . . . . . 7 ( L ‘𝐵) = {𝑑 ∈ ( O ‘( bday 𝐵)) ∣ 𝑑 <s 𝐵}
4948reqabi 3453 . . . . . 6 (𝑑 ∈ ( L ‘𝐵) ↔ (𝑑 ∈ ( O ‘( bday 𝐵)) ∧ 𝑑 <s 𝐵))
5046, 47, 49sylanbrc 582 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 ∈ ( L ‘𝐵))
51 fnfvima 7237 . . . . 5 (( -us Fn No ∧ ( L ‘𝐵) ⊆ No 𝑑 ∈ ( L ‘𝐵)) → ( -us𝑑) ∈ ( -us “ ( L ‘𝐵)))
5238, 39, 50, 51mp3an12i 1464 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝑑) ∈ ( -us “ ( L ‘𝐵)))
5334, 37, 52ssltsepcd 27533 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐵) <s ( -us𝑑))
5430simp2d 1142 . . . . 5 (𝜑 → ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)})
5554adantr 480 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)})
56 rightssno 27614 . . . . 5 ( R ‘𝐴) ⊆ No
57 simprr2 1221 . . . . . 6 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝐴 <s 𝑑)
58 rightval 27597 . . . . . . 7 ( R ‘𝐴) = {𝑑 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑑}
5958reqabi 3453 . . . . . 6 (𝑑 ∈ ( R ‘𝐴) ↔ (𝑑 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝑑))
6043, 57, 59sylanbrc 582 . . . . 5 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → 𝑑 ∈ ( R ‘𝐴))
61 fnfvima 7237 . . . . 5 (( -us Fn No ∧ ( R ‘𝐴) ⊆ No 𝑑 ∈ ( R ‘𝐴)) → ( -us𝑑) ∈ ( -us “ ( R ‘𝐴)))
6238, 56, 60, 61mp3an12i 1464 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝑑) ∈ ( -us “ ( R ‘𝐴)))
63 fvex 6904 . . . . . 6 ( -us𝐴) ∈ V
6463snid 4664 . . . . 5 ( -us𝐴) ∈ {( -us𝐴)}
6564a1i 11 . . . 4 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐴) ∈ {( -us𝐴)})
6655, 62, 65ssltsepcd 27533 . . 3 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝑑) <s ( -us𝐴))
6715, 29, 32, 53, 66slttrd 27499 . 2 ((𝜑 ∧ (𝑑 No ∧ (( bday 𝑑) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑑𝑑 <s 𝐵))) → ( -us𝐵) <s ( -us𝐴))
686, 67rexlimddv 3160 1 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wrex 3069  cun 3946  wss 3948  c0 4322  {csn 4628   class class class wbr 5148  cima 5679  Oncon0 6364   Fn wfn 6538  cfv 6543   No csur 27380   <s cslt 27381   bday cbday 27382   <<s csslt 27519   0s c0s 27561   O cold 27576   L cleft 27578   R cright 27579   -us cnegs 27734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-1o 8470  df-2o 8471  df-no 27383  df-slt 27384  df-bday 27385  df-sslt 27520  df-scut 27522  df-0s 27563  df-made 27580  df-old 27581  df-left 27583  df-right 27584  df-norec 27661  df-negs 27736
This theorem is referenced by:  negsproplem7  27748
  Copyright terms: Public domain W3C validator