MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem2 Structured version   Visualization version   GIF version

Theorem negsproplem2 27742
Description: Lemma for surreal negation. Show that the cut that defines negation is legitimate. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem2.1 (𝜑𝐴 No )
Assertion
Ref Expression
negsproplem2 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem2
Dummy variables 𝑎 𝑏 𝑥𝐿 𝑥𝑅 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negsfn 27737 . . . 4 -us Fn No
2 fnfun 6648 . . . 4 ( -us Fn No → Fun -us )
31, 2ax-mp 5 . . 3 Fun -us
4 fvex 6903 . . . 4 ( R ‘𝐴) ∈ V
54funimaex 6635 . . 3 (Fun -us → ( -us “ ( R ‘𝐴)) ∈ V)
63, 5mp1i 13 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) ∈ V)
7 fvex 6903 . . . 4 ( L ‘𝐴) ∈ V
87funimaex 6635 . . 3 (Fun -us → ( -us “ ( L ‘𝐴)) ∈ V)
93, 8mp1i 13 . 2 (𝜑 → ( -us “ ( L ‘𝐴)) ∈ V)
10 rightssold 27611 . . . 4 ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴))
11 imass2 6100 . . . 4 (( R ‘𝐴) ⊆ ( O ‘( bday 𝐴)) → ( -us “ ( R ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴))))
1210, 11ax-mp 5 . . 3 ( -us “ ( R ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴)))
13 negsproplem.1 . . . . . . . 8 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
1413adantr 479 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
15 oldssno 27593 . . . . . . . . 9 ( O ‘( bday 𝐴)) ⊆ No
1615sseli 3977 . . . . . . . 8 (𝑎 ∈ ( O ‘( bday 𝐴)) → 𝑎 No )
1716adantl 480 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → 𝑎 No )
18 0sno 27564 . . . . . . . 8 0s No
1918a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → 0s No )
20 bday0s 27566 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
2120uneq2i 4159 . . . . . . . . 9 (( bday 𝑎) ∪ ( bday ‘ 0s )) = (( bday 𝑎) ∪ ∅)
22 un0 4389 . . . . . . . . 9 (( bday 𝑎) ∪ ∅) = ( bday 𝑎)
2321, 22eqtri 2758 . . . . . . . 8 (( bday 𝑎) ∪ ( bday ‘ 0s )) = ( bday 𝑎)
24 oldbdayim 27620 . . . . . . . . . 10 (𝑎 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑎) ∈ ( bday 𝐴))
2524adantl 480 . . . . . . . . 9 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑎) ∈ ( bday 𝐴))
26 elun1 4175 . . . . . . . . 9 (( bday 𝑎) ∈ ( bday 𝐴) → ( bday 𝑎) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑎) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2823, 27eqeltrid 2835 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → (( bday 𝑎) ∪ ( bday ‘ 0s )) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2914, 17, 19, 28negsproplem1 27741 . . . . . 6 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → (( -us𝑎) ∈ No ∧ (𝑎 <s 0s → ( -us ‘ 0s ) <s ( -us𝑎))))
3029simpld 493 . . . . 5 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( -us𝑎) ∈ No )
3130ralrimiva 3144 . . . 4 (𝜑 → ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No )
321fndmi 6652 . . . . . 6 dom -us = No
3315, 32sseqtrri 4018 . . . . 5 ( O ‘( bday 𝐴)) ⊆ dom -us
34 funimass4 6955 . . . . 5 ((Fun -us ∧ ( O ‘( bday 𝐴)) ⊆ dom -us ) → (( -us “ ( O ‘( bday 𝐴))) ⊆ No ↔ ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No ))
353, 33, 34mp2an 688 . . . 4 (( -us “ ( O ‘( bday 𝐴))) ⊆ No ↔ ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No )
3631, 35sylibr 233 . . 3 (𝜑 → ( -us “ ( O ‘( bday 𝐴))) ⊆ No )
3712, 36sstrid 3992 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) ⊆ No )
38 leftssold 27610 . . . 4 ( L ‘𝐴) ⊆ ( O ‘( bday 𝐴))
39 imass2 6100 . . . 4 (( L ‘𝐴) ⊆ ( O ‘( bday 𝐴)) → ( -us “ ( L ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴))))
4038, 39ax-mp 5 . . 3 ( -us “ ( L ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴)))
4140, 36sstrid 3992 . 2 (𝜑 → ( -us “ ( L ‘𝐴)) ⊆ No )
42 rightssno 27613 . . . . . . 7 ( R ‘𝐴) ⊆ No
43 fvelimab 6963 . . . . . . 7 (( -us Fn No ∧ ( R ‘𝐴) ⊆ No ) → (𝑎 ∈ ( -us “ ( R ‘𝐴)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎))
441, 42, 43mp2an 688 . . . . . 6 (𝑎 ∈ ( -us “ ( R ‘𝐴)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎)
45 leftssno 27612 . . . . . . 7 ( L ‘𝐴) ⊆ No
46 fvelimab 6963 . . . . . . 7 (( -us Fn No ∧ ( L ‘𝐴) ⊆ No ) → (𝑏 ∈ ( -us “ ( L ‘𝐴)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
471, 45, 46mp2an 688 . . . . . 6 (𝑏 ∈ ( -us “ ( L ‘𝐴)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏)
4844, 47anbi12i 625 . . . . 5 ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎 ∧ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
49 reeanv 3224 . . . . 5 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎 ∧ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
5048, 49bitr4i 277 . . . 4 ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏))
51 lltropt 27604 . . . . . . . . 9 ( L ‘𝐴) <<s ( R ‘𝐴)
5251a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( L ‘𝐴) <<s ( R ‘𝐴))
53 simprr 769 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 ∈ ( L ‘𝐴))
54 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 ∈ ( R ‘𝐴))
5552, 53, 54ssltsepcd 27532 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 <s 𝑥𝑅)
5613adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
5745sseli 3977 . . . . . . . . . 10 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 No )
5857ad2antll 725 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 No )
5942sseli 3977 . . . . . . . . . . 11 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 No )
6059adantr 479 . . . . . . . . . 10 ((𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴)) → 𝑥𝑅 No )
6160adantl 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 No )
6238sseli 3977 . . . . . . . . . . . . 13 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ ( O ‘( bday 𝐴)))
6362ad2antll 725 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 ∈ ( O ‘( bday 𝐴)))
64 oldbdayim 27620 . . . . . . . . . . . 12 (𝑥𝐿 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥𝐿) ∈ ( bday 𝐴))
6563, 64syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( bday 𝑥𝐿) ∈ ( bday 𝐴))
6610a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴)))
6766sselda 3981 . . . . . . . . . . . . 13 ((𝜑𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ ( O ‘( bday 𝐴)))
6867adantrr 713 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 ∈ ( O ‘( bday 𝐴)))
69 oldbdayim 27620 . . . . . . . . . . . 12 (𝑥𝑅 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥𝑅) ∈ ( bday 𝐴))
7068, 69syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( bday 𝑥𝑅) ∈ ( bday 𝐴))
71 bdayelon 27514 . . . . . . . . . . . 12 ( bday 𝑥𝐿) ∈ On
72 bdayelon 27514 . . . . . . . . . . . 12 ( bday 𝑥𝑅) ∈ On
73 bdayelon 27514 . . . . . . . . . . . 12 ( bday 𝐴) ∈ On
74 onunel 6468 . . . . . . . . . . . 12 ((( bday 𝑥𝐿) ∈ On ∧ ( bday 𝑥𝑅) ∈ On ∧ ( bday 𝐴) ∈ On) → ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) ↔ (( bday 𝑥𝐿) ∈ ( bday 𝐴) ∧ ( bday 𝑥𝑅) ∈ ( bday 𝐴))))
7571, 72, 73, 74mp3an 1459 . . . . . . . . . . 11 ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) ↔ (( bday 𝑥𝐿) ∈ ( bday 𝐴) ∧ ( bday 𝑥𝑅) ∈ ( bday 𝐴)))
7665, 70, 75sylanbrc 581 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴))
77 elun1 4175 . . . . . . . . . 10 ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
7876, 77syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
7956, 58, 61, 78negsproplem1 27741 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( -us𝑥𝐿) ∈ No ∧ (𝑥𝐿 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥𝐿))))
8079simprd 494 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (𝑥𝐿 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥𝐿)))
8155, 80mpd 15 . . . . . 6 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( -us𝑥𝑅) <s ( -us𝑥𝐿))
82 breq12 5152 . . . . . 6 ((( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → (( -us𝑥𝑅) <s ( -us𝑥𝐿) ↔ 𝑎 <s 𝑏))
8381, 82syl5ibcom 244 . . . . 5 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ((( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → 𝑎 <s 𝑏))
8483rexlimdvva 3209 . . . 4 (𝜑 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → 𝑎 <s 𝑏))
8550, 84biimtrid 241 . . 3 (𝜑 → ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) → 𝑎 <s 𝑏))
86853impib 1114 . 2 ((𝜑𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) → 𝑎 <s 𝑏)
876, 9, 37, 41, 86ssltd 27529 1 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  wrex 3068  Vcvv 3472  cun 3945  wss 3947  c0 4321   class class class wbr 5147  dom cdm 5675  cima 5678  Oncon0 6363  Fun wfun 6536   Fn wfn 6537  cfv 6542   No csur 27379   <s cslt 27380   bday cbday 27381   <<s csslt 27518   0s c0s 27560   O cold 27575   L cleft 27577   R cright 27578   -us cnegs 27733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-1o 8468  df-2o 8469  df-no 27382  df-slt 27383  df-bday 27384  df-sslt 27519  df-scut 27521  df-0s 27562  df-made 27579  df-old 27580  df-left 27582  df-right 27583  df-norec 27660  df-negs 27735
This theorem is referenced by:  negsproplem3  27743
  Copyright terms: Public domain W3C validator