MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem2 Structured version   Visualization version   GIF version

Theorem negsproplem2 27940
Description: Lemma for surreal negation. Show that the cut that defines negation is legitimate. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem2.1 (𝜑𝐴 No )
Assertion
Ref Expression
negsproplem2 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem2
Dummy variables 𝑎 𝑏 𝑥𝐿 𝑥𝑅 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negsfn 27934 . . . 4 -us Fn No
2 fnfun 6582 . . . 4 ( -us Fn No → Fun -us )
31, 2ax-mp 5 . . 3 Fun -us
4 fvex 6835 . . . 4 ( R ‘𝐴) ∈ V
54funimaex 6570 . . 3 (Fun -us → ( -us “ ( R ‘𝐴)) ∈ V)
63, 5mp1i 13 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) ∈ V)
7 fvex 6835 . . . 4 ( L ‘𝐴) ∈ V
87funimaex 6570 . . 3 (Fun -us → ( -us “ ( L ‘𝐴)) ∈ V)
93, 8mp1i 13 . 2 (𝜑 → ( -us “ ( L ‘𝐴)) ∈ V)
10 rightssold 27794 . . . 4 ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴))
11 imass2 6053 . . . 4 (( R ‘𝐴) ⊆ ( O ‘( bday 𝐴)) → ( -us “ ( R ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴))))
1210, 11ax-mp 5 . . 3 ( -us “ ( R ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴)))
13 negsproplem.1 . . . . . . . 8 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
1413adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
15 oldssno 27771 . . . . . . . . 9 ( O ‘( bday 𝐴)) ⊆ No
1615sseli 3931 . . . . . . . 8 (𝑎 ∈ ( O ‘( bday 𝐴)) → 𝑎 No )
1716adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → 𝑎 No )
18 0sno 27740 . . . . . . . 8 0s No
1918a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → 0s No )
20 bday0s 27742 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
2120uneq2i 4116 . . . . . . . . 9 (( bday 𝑎) ∪ ( bday ‘ 0s )) = (( bday 𝑎) ∪ ∅)
22 un0 4345 . . . . . . . . 9 (( bday 𝑎) ∪ ∅) = ( bday 𝑎)
2321, 22eqtri 2752 . . . . . . . 8 (( bday 𝑎) ∪ ( bday ‘ 0s )) = ( bday 𝑎)
24 oldbdayim 27803 . . . . . . . . . 10 (𝑎 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑎) ∈ ( bday 𝐴))
2524adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑎) ∈ ( bday 𝐴))
26 elun1 4133 . . . . . . . . 9 (( bday 𝑎) ∈ ( bday 𝐴) → ( bday 𝑎) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑎) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2823, 27eqeltrid 2832 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → (( bday 𝑎) ∪ ( bday ‘ 0s )) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2914, 17, 19, 28negsproplem1 27939 . . . . . 6 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → (( -us𝑎) ∈ No ∧ (𝑎 <s 0s → ( -us ‘ 0s ) <s ( -us𝑎))))
3029simpld 494 . . . . 5 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( -us𝑎) ∈ No )
3130ralrimiva 3121 . . . 4 (𝜑 → ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No )
321fndmi 6586 . . . . . 6 dom -us = No
3315, 32sseqtrri 3985 . . . . 5 ( O ‘( bday 𝐴)) ⊆ dom -us
34 funimass4 6887 . . . . 5 ((Fun -us ∧ ( O ‘( bday 𝐴)) ⊆ dom -us ) → (( -us “ ( O ‘( bday 𝐴))) ⊆ No ↔ ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No ))
353, 33, 34mp2an 692 . . . 4 (( -us “ ( O ‘( bday 𝐴))) ⊆ No ↔ ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No )
3631, 35sylibr 234 . . 3 (𝜑 → ( -us “ ( O ‘( bday 𝐴))) ⊆ No )
3712, 36sstrid 3947 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) ⊆ No )
38 leftssold 27793 . . . 4 ( L ‘𝐴) ⊆ ( O ‘( bday 𝐴))
39 imass2 6053 . . . 4 (( L ‘𝐴) ⊆ ( O ‘( bday 𝐴)) → ( -us “ ( L ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴))))
4038, 39ax-mp 5 . . 3 ( -us “ ( L ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴)))
4140, 36sstrid 3947 . 2 (𝜑 → ( -us “ ( L ‘𝐴)) ⊆ No )
42 rightssno 27796 . . . . . . 7 ( R ‘𝐴) ⊆ No
43 fvelimab 6895 . . . . . . 7 (( -us Fn No ∧ ( R ‘𝐴) ⊆ No ) → (𝑎 ∈ ( -us “ ( R ‘𝐴)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎))
441, 42, 43mp2an 692 . . . . . 6 (𝑎 ∈ ( -us “ ( R ‘𝐴)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎)
45 leftssno 27795 . . . . . . 7 ( L ‘𝐴) ⊆ No
46 fvelimab 6895 . . . . . . 7 (( -us Fn No ∧ ( L ‘𝐴) ⊆ No ) → (𝑏 ∈ ( -us “ ( L ‘𝐴)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
471, 45, 46mp2an 692 . . . . . 6 (𝑏 ∈ ( -us “ ( L ‘𝐴)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏)
4844, 47anbi12i 628 . . . . 5 ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎 ∧ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
49 reeanv 3201 . . . . 5 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎 ∧ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
5048, 49bitr4i 278 . . . 4 ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏))
51 lltropt 27786 . . . . . . . . 9 ( L ‘𝐴) <<s ( R ‘𝐴)
5251a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( L ‘𝐴) <<s ( R ‘𝐴))
53 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 ∈ ( L ‘𝐴))
54 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 ∈ ( R ‘𝐴))
5552, 53, 54ssltsepcd 27705 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 <s 𝑥𝑅)
5613adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
5745sseli 3931 . . . . . . . . . 10 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 No )
5857ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 No )
5942sseli 3931 . . . . . . . . . . 11 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 No )
6059adantr 480 . . . . . . . . . 10 ((𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴)) → 𝑥𝑅 No )
6160adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 No )
6238sseli 3931 . . . . . . . . . . . . 13 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ ( O ‘( bday 𝐴)))
6362ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 ∈ ( O ‘( bday 𝐴)))
64 oldbdayim 27803 . . . . . . . . . . . 12 (𝑥𝐿 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥𝐿) ∈ ( bday 𝐴))
6563, 64syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( bday 𝑥𝐿) ∈ ( bday 𝐴))
6610a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴)))
6766sselda 3935 . . . . . . . . . . . . 13 ((𝜑𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ ( O ‘( bday 𝐴)))
6867adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 ∈ ( O ‘( bday 𝐴)))
69 oldbdayim 27803 . . . . . . . . . . . 12 (𝑥𝑅 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥𝑅) ∈ ( bday 𝐴))
7068, 69syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( bday 𝑥𝑅) ∈ ( bday 𝐴))
71 bdayelon 27686 . . . . . . . . . . . 12 ( bday 𝑥𝐿) ∈ On
72 bdayelon 27686 . . . . . . . . . . . 12 ( bday 𝑥𝑅) ∈ On
73 bdayelon 27686 . . . . . . . . . . . 12 ( bday 𝐴) ∈ On
74 onunel 6414 . . . . . . . . . . . 12 ((( bday 𝑥𝐿) ∈ On ∧ ( bday 𝑥𝑅) ∈ On ∧ ( bday 𝐴) ∈ On) → ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) ↔ (( bday 𝑥𝐿) ∈ ( bday 𝐴) ∧ ( bday 𝑥𝑅) ∈ ( bday 𝐴))))
7571, 72, 73, 74mp3an 1463 . . . . . . . . . . 11 ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) ↔ (( bday 𝑥𝐿) ∈ ( bday 𝐴) ∧ ( bday 𝑥𝑅) ∈ ( bday 𝐴)))
7665, 70, 75sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴))
77 elun1 4133 . . . . . . . . . 10 ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
7876, 77syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
7956, 58, 61, 78negsproplem1 27939 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( -us𝑥𝐿) ∈ No ∧ (𝑥𝐿 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥𝐿))))
8079simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (𝑥𝐿 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥𝐿)))
8155, 80mpd 15 . . . . . 6 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( -us𝑥𝑅) <s ( -us𝑥𝐿))
82 breq12 5097 . . . . . 6 ((( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → (( -us𝑥𝑅) <s ( -us𝑥𝐿) ↔ 𝑎 <s 𝑏))
8381, 82syl5ibcom 245 . . . . 5 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ((( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → 𝑎 <s 𝑏))
8483rexlimdvva 3186 . . . 4 (𝜑 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → 𝑎 <s 𝑏))
8550, 84biimtrid 242 . . 3 (𝜑 → ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) → 𝑎 <s 𝑏))
86853impib 1116 . 2 ((𝜑𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) → 𝑎 <s 𝑏)
876, 9, 37, 41, 86ssltd 27702 1 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  cun 3901  wss 3903  c0 4284   class class class wbr 5092  dom cdm 5619  cima 5622  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  cfv 6482   No csur 27549   <s cslt 27550   bday cbday 27551   <<s csslt 27691   0s c0s 27736   O cold 27753   L cleft 27755   R cright 27756   -us cnegs 27930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553  df-bday 27554  df-sslt 27692  df-scut 27694  df-0s 27738  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-negs 27932
This theorem is referenced by:  negsproplem3  27941
  Copyright terms: Public domain W3C validator