MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem2 Structured version   Visualization version   GIF version

Theorem negsproplem2 27935
Description: Lemma for surreal negation. Show that the cut that defines negation is legitimate. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem2.1 (𝜑𝐴 No )
Assertion
Ref Expression
negsproplem2 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem2
Dummy variables 𝑎 𝑏 𝑥𝐿 𝑥𝑅 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negsfn 27929 . . . 4 -us Fn No
2 fnfun 6618 . . . 4 ( -us Fn No → Fun -us )
31, 2ax-mp 5 . . 3 Fun -us
4 fvex 6871 . . . 4 ( R ‘𝐴) ∈ V
54funimaex 6605 . . 3 (Fun -us → ( -us “ ( R ‘𝐴)) ∈ V)
63, 5mp1i 13 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) ∈ V)
7 fvex 6871 . . . 4 ( L ‘𝐴) ∈ V
87funimaex 6605 . . 3 (Fun -us → ( -us “ ( L ‘𝐴)) ∈ V)
93, 8mp1i 13 . 2 (𝜑 → ( -us “ ( L ‘𝐴)) ∈ V)
10 rightssold 27791 . . . 4 ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴))
11 imass2 6073 . . . 4 (( R ‘𝐴) ⊆ ( O ‘( bday 𝐴)) → ( -us “ ( R ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴))))
1210, 11ax-mp 5 . . 3 ( -us “ ( R ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴)))
13 negsproplem.1 . . . . . . . 8 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
1413adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
15 oldssno 27769 . . . . . . . . 9 ( O ‘( bday 𝐴)) ⊆ No
1615sseli 3942 . . . . . . . 8 (𝑎 ∈ ( O ‘( bday 𝐴)) → 𝑎 No )
1716adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → 𝑎 No )
18 0sno 27738 . . . . . . . 8 0s No
1918a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → 0s No )
20 bday0s 27740 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
2120uneq2i 4128 . . . . . . . . 9 (( bday 𝑎) ∪ ( bday ‘ 0s )) = (( bday 𝑎) ∪ ∅)
22 un0 4357 . . . . . . . . 9 (( bday 𝑎) ∪ ∅) = ( bday 𝑎)
2321, 22eqtri 2752 . . . . . . . 8 (( bday 𝑎) ∪ ( bday ‘ 0s )) = ( bday 𝑎)
24 oldbdayim 27800 . . . . . . . . . 10 (𝑎 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑎) ∈ ( bday 𝐴))
2524adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑎) ∈ ( bday 𝐴))
26 elun1 4145 . . . . . . . . 9 (( bday 𝑎) ∈ ( bday 𝐴) → ( bday 𝑎) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑎) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2823, 27eqeltrid 2832 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → (( bday 𝑎) ∪ ( bday ‘ 0s )) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2914, 17, 19, 28negsproplem1 27934 . . . . . 6 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → (( -us𝑎) ∈ No ∧ (𝑎 <s 0s → ( -us ‘ 0s ) <s ( -us𝑎))))
3029simpld 494 . . . . 5 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( -us𝑎) ∈ No )
3130ralrimiva 3125 . . . 4 (𝜑 → ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No )
321fndmi 6622 . . . . . 6 dom -us = No
3315, 32sseqtrri 3996 . . . . 5 ( O ‘( bday 𝐴)) ⊆ dom -us
34 funimass4 6925 . . . . 5 ((Fun -us ∧ ( O ‘( bday 𝐴)) ⊆ dom -us ) → (( -us “ ( O ‘( bday 𝐴))) ⊆ No ↔ ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No ))
353, 33, 34mp2an 692 . . . 4 (( -us “ ( O ‘( bday 𝐴))) ⊆ No ↔ ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No )
3631, 35sylibr 234 . . 3 (𝜑 → ( -us “ ( O ‘( bday 𝐴))) ⊆ No )
3712, 36sstrid 3958 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) ⊆ No )
38 leftssold 27790 . . . 4 ( L ‘𝐴) ⊆ ( O ‘( bday 𝐴))
39 imass2 6073 . . . 4 (( L ‘𝐴) ⊆ ( O ‘( bday 𝐴)) → ( -us “ ( L ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴))))
4038, 39ax-mp 5 . . 3 ( -us “ ( L ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴)))
4140, 36sstrid 3958 . 2 (𝜑 → ( -us “ ( L ‘𝐴)) ⊆ No )
42 rightssno 27793 . . . . . . 7 ( R ‘𝐴) ⊆ No
43 fvelimab 6933 . . . . . . 7 (( -us Fn No ∧ ( R ‘𝐴) ⊆ No ) → (𝑎 ∈ ( -us “ ( R ‘𝐴)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎))
441, 42, 43mp2an 692 . . . . . 6 (𝑎 ∈ ( -us “ ( R ‘𝐴)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎)
45 leftssno 27792 . . . . . . 7 ( L ‘𝐴) ⊆ No
46 fvelimab 6933 . . . . . . 7 (( -us Fn No ∧ ( L ‘𝐴) ⊆ No ) → (𝑏 ∈ ( -us “ ( L ‘𝐴)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
471, 45, 46mp2an 692 . . . . . 6 (𝑏 ∈ ( -us “ ( L ‘𝐴)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏)
4844, 47anbi12i 628 . . . . 5 ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎 ∧ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
49 reeanv 3209 . . . . 5 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎 ∧ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
5048, 49bitr4i 278 . . . 4 ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏))
51 lltropt 27784 . . . . . . . . 9 ( L ‘𝐴) <<s ( R ‘𝐴)
5251a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( L ‘𝐴) <<s ( R ‘𝐴))
53 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 ∈ ( L ‘𝐴))
54 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 ∈ ( R ‘𝐴))
5552, 53, 54ssltsepcd 27706 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 <s 𝑥𝑅)
5613adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
5745sseli 3942 . . . . . . . . . 10 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 No )
5857ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 No )
5942sseli 3942 . . . . . . . . . . 11 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 No )
6059adantr 480 . . . . . . . . . 10 ((𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴)) → 𝑥𝑅 No )
6160adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 No )
6238sseli 3942 . . . . . . . . . . . . 13 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ ( O ‘( bday 𝐴)))
6362ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 ∈ ( O ‘( bday 𝐴)))
64 oldbdayim 27800 . . . . . . . . . . . 12 (𝑥𝐿 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥𝐿) ∈ ( bday 𝐴))
6563, 64syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( bday 𝑥𝐿) ∈ ( bday 𝐴))
6610a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴)))
6766sselda 3946 . . . . . . . . . . . . 13 ((𝜑𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ ( O ‘( bday 𝐴)))
6867adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 ∈ ( O ‘( bday 𝐴)))
69 oldbdayim 27800 . . . . . . . . . . . 12 (𝑥𝑅 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥𝑅) ∈ ( bday 𝐴))
7068, 69syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( bday 𝑥𝑅) ∈ ( bday 𝐴))
71 bdayelon 27688 . . . . . . . . . . . 12 ( bday 𝑥𝐿) ∈ On
72 bdayelon 27688 . . . . . . . . . . . 12 ( bday 𝑥𝑅) ∈ On
73 bdayelon 27688 . . . . . . . . . . . 12 ( bday 𝐴) ∈ On
74 onunel 6439 . . . . . . . . . . . 12 ((( bday 𝑥𝐿) ∈ On ∧ ( bday 𝑥𝑅) ∈ On ∧ ( bday 𝐴) ∈ On) → ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) ↔ (( bday 𝑥𝐿) ∈ ( bday 𝐴) ∧ ( bday 𝑥𝑅) ∈ ( bday 𝐴))))
7571, 72, 73, 74mp3an 1463 . . . . . . . . . . 11 ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) ↔ (( bday 𝑥𝐿) ∈ ( bday 𝐴) ∧ ( bday 𝑥𝑅) ∈ ( bday 𝐴)))
7665, 70, 75sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴))
77 elun1 4145 . . . . . . . . . 10 ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
7876, 77syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
7956, 58, 61, 78negsproplem1 27934 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( -us𝑥𝐿) ∈ No ∧ (𝑥𝐿 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥𝐿))))
8079simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (𝑥𝐿 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥𝐿)))
8155, 80mpd 15 . . . . . 6 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( -us𝑥𝑅) <s ( -us𝑥𝐿))
82 breq12 5112 . . . . . 6 ((( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → (( -us𝑥𝑅) <s ( -us𝑥𝐿) ↔ 𝑎 <s 𝑏))
8381, 82syl5ibcom 245 . . . . 5 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ((( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → 𝑎 <s 𝑏))
8483rexlimdvva 3194 . . . 4 (𝜑 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → 𝑎 <s 𝑏))
8550, 84biimtrid 242 . . 3 (𝜑 → ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) → 𝑎 <s 𝑏))
86853impib 1116 . 2 ((𝜑𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) → 𝑎 <s 𝑏)
876, 9, 37, 41, 86ssltd 27703 1 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cun 3912  wss 3914  c0 4296   class class class wbr 5107  dom cdm 5638  cima 5641  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  cfv 6511   No csur 27551   <s cslt 27552   bday cbday 27553   <<s csslt 27692   0s c0s 27734   O cold 27751   L cleft 27753   R cright 27754   -us cnegs 27925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-negs 27927
This theorem is referenced by:  negsproplem3  27936
  Copyright terms: Public domain W3C validator