MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem2 Structured version   Visualization version   GIF version

Theorem negsproplem2 27971
Description: Lemma for surreal negation. Show that the cut that defines negation is legitimate. (Contributed by Scott Fenton, 2-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem2.1 (𝜑𝐴 No )
Assertion
Ref Expression
negsproplem2 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem2
Dummy variables 𝑎 𝑏 𝑥𝐿 𝑥𝑅 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negsfn 27965 . . . 4 -us Fn No
2 fnfun 6581 . . . 4 ( -us Fn No → Fun -us )
31, 2ax-mp 5 . . 3 Fun -us
4 fvex 6835 . . . 4 ( R ‘𝐴) ∈ V
54funimaex 6569 . . 3 (Fun -us → ( -us “ ( R ‘𝐴)) ∈ V)
63, 5mp1i 13 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) ∈ V)
7 fvex 6835 . . . 4 ( L ‘𝐴) ∈ V
87funimaex 6569 . . 3 (Fun -us → ( -us “ ( L ‘𝐴)) ∈ V)
93, 8mp1i 13 . 2 (𝜑 → ( -us “ ( L ‘𝐴)) ∈ V)
10 rightssold 27825 . . . 4 ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴))
11 imass2 6050 . . . 4 (( R ‘𝐴) ⊆ ( O ‘( bday 𝐴)) → ( -us “ ( R ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴))))
1210, 11ax-mp 5 . . 3 ( -us “ ( R ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴)))
13 negsproplem.1 . . . . . . . 8 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
1413adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
15 oldssno 27802 . . . . . . . . 9 ( O ‘( bday 𝐴)) ⊆ No
1615sseli 3925 . . . . . . . 8 (𝑎 ∈ ( O ‘( bday 𝐴)) → 𝑎 No )
1716adantl 481 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → 𝑎 No )
18 0sno 27770 . . . . . . . 8 0s No
1918a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → 0s No )
20 bday0s 27772 . . . . . . . . . 10 ( bday ‘ 0s ) = ∅
2120uneq2i 4112 . . . . . . . . 9 (( bday 𝑎) ∪ ( bday ‘ 0s )) = (( bday 𝑎) ∪ ∅)
22 un0 4341 . . . . . . . . 9 (( bday 𝑎) ∪ ∅) = ( bday 𝑎)
2321, 22eqtri 2754 . . . . . . . 8 (( bday 𝑎) ∪ ( bday ‘ 0s )) = ( bday 𝑎)
24 oldbdayim 27834 . . . . . . . . . 10 (𝑎 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑎) ∈ ( bday 𝐴))
2524adantl 481 . . . . . . . . 9 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑎) ∈ ( bday 𝐴))
26 elun1 4129 . . . . . . . . 9 (( bday 𝑎) ∈ ( bday 𝐴) → ( bday 𝑎) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2725, 26syl 17 . . . . . . . 8 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( bday 𝑎) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2823, 27eqeltrid 2835 . . . . . . 7 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → (( bday 𝑎) ∪ ( bday ‘ 0s )) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
2914, 17, 19, 28negsproplem1 27970 . . . . . 6 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → (( -us𝑎) ∈ No ∧ (𝑎 <s 0s → ( -us ‘ 0s ) <s ( -us𝑎))))
3029simpld 494 . . . . 5 ((𝜑𝑎 ∈ ( O ‘( bday 𝐴))) → ( -us𝑎) ∈ No )
3130ralrimiva 3124 . . . 4 (𝜑 → ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No )
321fndmi 6585 . . . . . 6 dom -us = No
3315, 32sseqtrri 3979 . . . . 5 ( O ‘( bday 𝐴)) ⊆ dom -us
34 funimass4 6886 . . . . 5 ((Fun -us ∧ ( O ‘( bday 𝐴)) ⊆ dom -us ) → (( -us “ ( O ‘( bday 𝐴))) ⊆ No ↔ ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No ))
353, 33, 34mp2an 692 . . . 4 (( -us “ ( O ‘( bday 𝐴))) ⊆ No ↔ ∀𝑎 ∈ ( O ‘( bday 𝐴))( -us𝑎) ∈ No )
3631, 35sylibr 234 . . 3 (𝜑 → ( -us “ ( O ‘( bday 𝐴))) ⊆ No )
3712, 36sstrid 3941 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) ⊆ No )
38 leftssold 27824 . . . 4 ( L ‘𝐴) ⊆ ( O ‘( bday 𝐴))
39 imass2 6050 . . . 4 (( L ‘𝐴) ⊆ ( O ‘( bday 𝐴)) → ( -us “ ( L ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴))))
4038, 39ax-mp 5 . . 3 ( -us “ ( L ‘𝐴)) ⊆ ( -us “ ( O ‘( bday 𝐴)))
4140, 36sstrid 3941 . 2 (𝜑 → ( -us “ ( L ‘𝐴)) ⊆ No )
42 rightssno 27827 . . . . . . 7 ( R ‘𝐴) ⊆ No
43 fvelimab 6894 . . . . . . 7 (( -us Fn No ∧ ( R ‘𝐴) ⊆ No ) → (𝑎 ∈ ( -us “ ( R ‘𝐴)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎))
441, 42, 43mp2an 692 . . . . . 6 (𝑎 ∈ ( -us “ ( R ‘𝐴)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎)
45 leftssno 27826 . . . . . . 7 ( L ‘𝐴) ⊆ No
46 fvelimab 6894 . . . . . . 7 (( -us Fn No ∧ ( L ‘𝐴) ⊆ No ) → (𝑏 ∈ ( -us “ ( L ‘𝐴)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
471, 45, 46mp2an 692 . . . . . 6 (𝑏 ∈ ( -us “ ( L ‘𝐴)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏)
4844, 47anbi12i 628 . . . . 5 ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎 ∧ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
49 reeanv 3204 . . . . 5 (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) ↔ (∃𝑥𝑅 ∈ ( R ‘𝐴)( -us𝑥𝑅) = 𝑎 ∧ ∃𝑥𝐿 ∈ ( L ‘𝐴)( -us𝑥𝐿) = 𝑏))
5048, 49bitr4i 278 . . . 4 ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) ↔ ∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏))
51 lltropt 27817 . . . . . . . . 9 ( L ‘𝐴) <<s ( R ‘𝐴)
5251a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( L ‘𝐴) <<s ( R ‘𝐴))
53 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 ∈ ( L ‘𝐴))
54 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 ∈ ( R ‘𝐴))
5552, 53, 54ssltsepcd 27735 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 <s 𝑥𝑅)
5613adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
5745sseli 3925 . . . . . . . . . 10 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 No )
5857ad2antll 729 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 No )
5942sseli 3925 . . . . . . . . . . 11 (𝑥𝑅 ∈ ( R ‘𝐴) → 𝑥𝑅 No )
6059adantr 480 . . . . . . . . . 10 ((𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴)) → 𝑥𝑅 No )
6160adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 No )
6238sseli 3925 . . . . . . . . . . . . 13 (𝑥𝐿 ∈ ( L ‘𝐴) → 𝑥𝐿 ∈ ( O ‘( bday 𝐴)))
6362ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝐿 ∈ ( O ‘( bday 𝐴)))
64 oldbdayim 27834 . . . . . . . . . . . 12 (𝑥𝐿 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥𝐿) ∈ ( bday 𝐴))
6563, 64syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( bday 𝑥𝐿) ∈ ( bday 𝐴))
6610a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ( R ‘𝐴) ⊆ ( O ‘( bday 𝐴)))
6766sselda 3929 . . . . . . . . . . . . 13 ((𝜑𝑥𝑅 ∈ ( R ‘𝐴)) → 𝑥𝑅 ∈ ( O ‘( bday 𝐴)))
6867adantrr 717 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → 𝑥𝑅 ∈ ( O ‘( bday 𝐴)))
69 oldbdayim 27834 . . . . . . . . . . . 12 (𝑥𝑅 ∈ ( O ‘( bday 𝐴)) → ( bday 𝑥𝑅) ∈ ( bday 𝐴))
7068, 69syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( bday 𝑥𝑅) ∈ ( bday 𝐴))
71 bdayelon 27715 . . . . . . . . . . . 12 ( bday 𝑥𝐿) ∈ On
72 bdayelon 27715 . . . . . . . . . . . 12 ( bday 𝑥𝑅) ∈ On
73 bdayelon 27715 . . . . . . . . . . . 12 ( bday 𝐴) ∈ On
74 onunel 6413 . . . . . . . . . . . 12 ((( bday 𝑥𝐿) ∈ On ∧ ( bday 𝑥𝑅) ∈ On ∧ ( bday 𝐴) ∈ On) → ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) ↔ (( bday 𝑥𝐿) ∈ ( bday 𝐴) ∧ ( bday 𝑥𝑅) ∈ ( bday 𝐴))))
7571, 72, 73, 74mp3an 1463 . . . . . . . . . . 11 ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) ↔ (( bday 𝑥𝐿) ∈ ( bday 𝐴) ∧ ( bday 𝑥𝑅) ∈ ( bday 𝐴)))
7665, 70, 75sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴))
77 elun1 4129 . . . . . . . . . 10 ((( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ ( bday 𝐴) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
7876, 77syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( bday 𝑥𝐿) ∪ ( bday 𝑥𝑅)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)))
7956, 58, 61, 78negsproplem1 27970 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (( -us𝑥𝐿) ∈ No ∧ (𝑥𝐿 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥𝐿))))
8079simprd 495 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → (𝑥𝐿 <s 𝑥𝑅 → ( -us𝑥𝑅) <s ( -us𝑥𝐿)))
8155, 80mpd 15 . . . . . 6 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ( -us𝑥𝑅) <s ( -us𝑥𝐿))
82 breq12 5094 . . . . . 6 ((( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → (( -us𝑥𝑅) <s ( -us𝑥𝐿) ↔ 𝑎 <s 𝑏))
8381, 82syl5ibcom 245 . . . . 5 ((𝜑 ∧ (𝑥𝑅 ∈ ( R ‘𝐴) ∧ 𝑥𝐿 ∈ ( L ‘𝐴))) → ((( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → 𝑎 <s 𝑏))
8483rexlimdvva 3189 . . . 4 (𝜑 → (∃𝑥𝑅 ∈ ( R ‘𝐴)∃𝑥𝐿 ∈ ( L ‘𝐴)(( -us𝑥𝑅) = 𝑎 ∧ ( -us𝑥𝐿) = 𝑏) → 𝑎 <s 𝑏))
8550, 84biimtrid 242 . . 3 (𝜑 → ((𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) → 𝑎 <s 𝑏))
86853impib 1116 . 2 ((𝜑𝑎 ∈ ( -us “ ( R ‘𝐴)) ∧ 𝑏 ∈ ( -us “ ( L ‘𝐴))) → 𝑎 <s 𝑏)
876, 9, 37, 41, 86ssltd 27731 1 (𝜑 → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cun 3895  wss 3897  c0 4280   class class class wbr 5089  dom cdm 5614  cima 5617  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  cfv 6481   No csur 27578   <s cslt 27579   bday cbday 27580   <<s csslt 27720   0s c0s 27766   O cold 27784   L cleft 27786   R cright 27787   -us cnegs 27961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721  df-scut 27723  df-0s 27768  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-negs 27963
This theorem is referenced by:  negsproplem3  27972
  Copyright terms: Public domain W3C validator