MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofsslt Structured version   Visualization version   GIF version

Theorem cofsslt 27862
Description: If every element of 𝐴 is bounded above by some element of 𝐵 and 𝐵 precedes 𝐶, then 𝐴 precedes 𝐶. Note - we will often use the term "cofinal" to denote that every element of 𝐴 is bounded above by some element of 𝐵. Similarly, we will use the term "coinitial" to denote that every element of 𝐴 is bounded below by some element of 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.)
Assertion
Ref Expression
cofsslt ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cofsslt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 ∈ 𝒫 No )
2 ssltex2 27727 . . 3 (𝐵 <<s 𝐶𝐶 ∈ V)
323ad2ant3 1135 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐶 ∈ V)
41elpwid 4556 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 No )
5 ssltss2 27729 . . 3 (𝐵 <<s 𝐶𝐶 No )
653ad2ant3 1135 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐶 No )
7 breq1 5092 . . . . . 6 (𝑥 = 𝑎 → (𝑥 ≤s 𝑦𝑎 ≤s 𝑦))
87rexbidv 3156 . . . . 5 (𝑥 = 𝑎 → (∃𝑦𝐵 𝑥 ≤s 𝑦 ↔ ∃𝑦𝐵 𝑎 ≤s 𝑦))
9 simp12 1205 . . . . 5 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦)
10 simp2 1137 . . . . 5 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → 𝑎𝐴)
118, 9, 10rspcdva 3573 . . . 4 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∃𝑦𝐵 𝑎 ≤s 𝑦)
12 breq2 5093 . . . . 5 (𝑦 = 𝑏 → (𝑎 ≤s 𝑦𝑎 ≤s 𝑏))
1312cbvrexvw 3211 . . . 4 (∃𝑦𝐵 𝑎 ≤s 𝑦 ↔ ∃𝑏𝐵 𝑎 ≤s 𝑏)
1411, 13sylib 218 . . 3 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∃𝑏𝐵 𝑎 ≤s 𝑏)
15 simpl11 1249 . . . . . 6 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐴 ∈ 𝒫 No )
1615elpwid 4556 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐴 No )
17 simpl2 1193 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎𝐴)
1816, 17sseldd 3930 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 No )
19 simpl13 1251 . . . . . 6 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐵 <<s 𝐶)
20 ssltss1 27728 . . . . . 6 (𝐵 <<s 𝐶𝐵 No )
2119, 20syl 17 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐵 No )
22 simprl 770 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏𝐵)
2321, 22sseldd 3930 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏 No )
2419, 5syl 17 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐶 No )
25 simpl3 1194 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑐𝐶)
2624, 25sseldd 3930 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑐 No )
27 simprr 772 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 ≤s 𝑏)
2819, 22, 25ssltsepcd 27735 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏 <s 𝑐)
2918, 23, 26, 27, 28slelttrd 27700 . . 3 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 <s 𝑐)
3014, 29rexlimddv 3139 . 2 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → 𝑎 <s 𝑐)
311, 3, 4, 6, 30ssltd 27731 1 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897  𝒫 cpw 4547   class class class wbr 5089   No csur 27578   <s cslt 27579   ≤s csle 27683   <<s csslt 27720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-sle 27684  df-sslt 27721
This theorem is referenced by:  cofcut1  27864  cofcut2  27866
  Copyright terms: Public domain W3C validator