Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofsslt Structured version   Visualization version   GIF version

Theorem cofsslt 33774
Description: If every element of 𝐴 is bounded by some element of 𝐵 and 𝐵 precedes 𝐶, then 𝐴 precedes 𝐶. Note - we will often use the term "cofinal" to denote that every element of 𝐴 is bounded above by some element of 𝐵. Similarly, we will use the term "coinitial" to denote that every element of 𝐴 is bounded below by some element of 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.)
Assertion
Ref Expression
cofsslt ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cofsslt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1138 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 ∈ 𝒫 No )
2 ssltex2 33668 . . 3 (𝐵 <<s 𝐶𝐶 ∈ V)
323ad2ant3 1137 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐶 ∈ V)
41elpwid 4510 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 No )
5 ssltss2 33670 . . 3 (𝐵 <<s 𝐶𝐶 No )
653ad2ant3 1137 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐶 No )
7 breq1 5042 . . . . . 6 (𝑥 = 𝑎 → (𝑥 ≤s 𝑦𝑎 ≤s 𝑦))
87rexbidv 3206 . . . . 5 (𝑥 = 𝑎 → (∃𝑦𝐵 𝑥 ≤s 𝑦 ↔ ∃𝑦𝐵 𝑎 ≤s 𝑦))
9 simp12 1206 . . . . 5 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦)
10 simp2 1139 . . . . 5 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → 𝑎𝐴)
118, 9, 10rspcdva 3529 . . . 4 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∃𝑦𝐵 𝑎 ≤s 𝑦)
12 breq2 5043 . . . . 5 (𝑦 = 𝑏 → (𝑎 ≤s 𝑦𝑎 ≤s 𝑏))
1312cbvrexvw 3349 . . . 4 (∃𝑦𝐵 𝑎 ≤s 𝑦 ↔ ∃𝑏𝐵 𝑎 ≤s 𝑏)
1411, 13sylib 221 . . 3 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∃𝑏𝐵 𝑎 ≤s 𝑏)
15 simpl11 1250 . . . . . 6 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐴 ∈ 𝒫 No )
1615elpwid 4510 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐴 No )
17 simpl2 1194 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎𝐴)
1816, 17sseldd 3888 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 No )
19 simpl13 1252 . . . . . 6 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐵 <<s 𝐶)
20 ssltss1 33669 . . . . . 6 (𝐵 <<s 𝐶𝐵 No )
2119, 20syl 17 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐵 No )
22 simprl 771 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏𝐵)
2321, 22sseldd 3888 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏 No )
2419, 5syl 17 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐶 No )
25 simpl3 1195 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑐𝐶)
2624, 25sseldd 3888 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑐 No )
27 simprr 773 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 ≤s 𝑏)
2819, 22, 25ssltsepcd 33674 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏 <s 𝑐)
2918, 23, 26, 27, 28slelttrd 33650 . . 3 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 <s 𝑐)
3014, 29rexlimddv 3200 . 2 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → 𝑎 <s 𝑐)
311, 3, 4, 6, 30ssltd 33672 1 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2112  wral 3051  wrex 3052  Vcvv 3398  wss 3853  𝒫 cpw 4499   class class class wbr 5039   No csur 33529   <s cslt 33530   ≤s csle 33633   <<s csslt 33661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-1o 8180  df-2o 8181  df-no 33532  df-slt 33533  df-sle 33634  df-sslt 33662
This theorem is referenced by:  cofcut1  33776  cofcut2  33777
  Copyright terms: Public domain W3C validator