MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofsslt Structured version   Visualization version   GIF version

Theorem cofsslt 27953
Description: If every element of 𝐴 is bounded above by some element of 𝐵 and 𝐵 precedes 𝐶, then 𝐴 precedes 𝐶. Note - we will often use the term "cofinal" to denote that every element of 𝐴 is bounded above by some element of 𝐵. Similarly, we will use the term "coinitial" to denote that every element of 𝐴 is bounded below by some element of 𝐵. (Contributed by Scott Fenton, 24-Sep-2024.)
Assertion
Ref Expression
cofsslt ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cofsslt
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 ∈ 𝒫 No )
2 ssltex2 27833 . . 3 (𝐵 <<s 𝐶𝐶 ∈ V)
323ad2ant3 1135 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐶 ∈ V)
41elpwid 4608 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 No )
5 ssltss2 27835 . . 3 (𝐵 <<s 𝐶𝐶 No )
653ad2ant3 1135 . 2 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐶 No )
7 breq1 5145 . . . . . 6 (𝑥 = 𝑎 → (𝑥 ≤s 𝑦𝑎 ≤s 𝑦))
87rexbidv 3178 . . . . 5 (𝑥 = 𝑎 → (∃𝑦𝐵 𝑥 ≤s 𝑦 ↔ ∃𝑦𝐵 𝑎 ≤s 𝑦))
9 simp12 1204 . . . . 5 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦)
10 simp2 1137 . . . . 5 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → 𝑎𝐴)
118, 9, 10rspcdva 3622 . . . 4 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∃𝑦𝐵 𝑎 ≤s 𝑦)
12 breq2 5146 . . . . 5 (𝑦 = 𝑏 → (𝑎 ≤s 𝑦𝑎 ≤s 𝑏))
1312cbvrexvw 3237 . . . 4 (∃𝑦𝐵 𝑎 ≤s 𝑦 ↔ ∃𝑏𝐵 𝑎 ≤s 𝑏)
1411, 13sylib 218 . . 3 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → ∃𝑏𝐵 𝑎 ≤s 𝑏)
15 simpl11 1248 . . . . . 6 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐴 ∈ 𝒫 No )
1615elpwid 4608 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐴 No )
17 simpl2 1192 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎𝐴)
1816, 17sseldd 3983 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 No )
19 simpl13 1250 . . . . . 6 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐵 <<s 𝐶)
20 ssltss1 27834 . . . . . 6 (𝐵 <<s 𝐶𝐵 No )
2119, 20syl 17 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐵 No )
22 simprl 770 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏𝐵)
2321, 22sseldd 3983 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏 No )
2419, 5syl 17 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝐶 No )
25 simpl3 1193 . . . . 5 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑐𝐶)
2624, 25sseldd 3983 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑐 No )
27 simprr 772 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 ≤s 𝑏)
2819, 22, 25ssltsepcd 27840 . . . 4 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑏 <s 𝑐)
2918, 23, 26, 27, 28slelttrd 27807 . . 3 ((((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) ∧ (𝑏𝐵𝑎 ≤s 𝑏)) → 𝑎 <s 𝑐)
3014, 29rexlimddv 3160 . 2 (((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) ∧ 𝑎𝐴𝑐𝐶) → 𝑎 <s 𝑐)
311, 3, 4, 6, 30ssltd 27837 1 ((𝐴 ∈ 𝒫 No ∧ ∀𝑥𝐴𝑦𝐵 𝑥 ≤s 𝑦𝐵 <<s 𝐶) → 𝐴 <<s 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  wss 3950  𝒫 cpw 4599   class class class wbr 5142   No csur 27685   <s cslt 27686   ≤s csle 27790   <<s csslt 27826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-1o 8507  df-2o 8508  df-no 27688  df-slt 27689  df-sle 27791  df-sslt 27827
This theorem is referenced by:  cofcut1  27955  cofcut2  27957
  Copyright terms: Public domain W3C validator