MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcutrtime Structured version   Visualization version   GIF version

Theorem cofcutrtime 27840
Description: If 𝑋 is the cut of 𝐴 and 𝐵 and all of 𝐴 and 𝐵 are older than 𝑋, then ( L ‘𝑋) is cofinal with 𝐴 and ( R ‘𝑋) is coinitial with 𝐵. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.)
Assertion
Ref Expression
cofcutrtime (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝐵   𝑧,𝐵   𝑧,𝑤,𝑋   𝑥,𝑋,𝑦   𝑧,𝑋
Allowed substitution hints:   𝐴(𝑦,𝑤)   𝐵(𝑦,𝑤)

Proof of Theorem cofcutrtime
StepHypRef Expression
1 ssun1 4168 . . . . . . . 8 𝐴 ⊆ (𝐴𝐵)
2 sstr 3986 . . . . . . . 8 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ( O ‘( bday 𝑋))) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
31, 2mpan 689 . . . . . . 7 ((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
433ad2ant1 1131 . . . . . 6 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
54sselda 3978 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ∈ ( O ‘( bday 𝑋)))
6 simpl2 1190 . . . . . . . . 9 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝐴 <<s 𝐵)
7 scutcut 27727 . . . . . . . . 9 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
86, 7syl 17 . . . . . . . 8 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
98simp2d 1141 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝐴 <<s {(𝐴 |s 𝐵)})
10 simpr 484 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥𝐴)
11 ovex 7447 . . . . . . . . 9 (𝐴 |s 𝐵) ∈ V
1211snid 4660 . . . . . . . 8 (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)}
1312a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)})
149, 10, 13ssltsepcd 27720 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 <s (𝐴 |s 𝐵))
15 simpl3 1191 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑋 = (𝐴 |s 𝐵))
1614, 15breqtrrd 5170 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 <s 𝑋)
17 leftval 27783 . . . . . . . 8 ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}
1817a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
1918eleq2d 2815 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
20 rabid 3448 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋))
2119, 20bitrdi 287 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
225, 16, 21mpbir2and 712 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ∈ ( L ‘𝑋))
23 leftssno 27800 . . . . . 6 ( L ‘𝑋) ⊆ No
2423, 22sselid 3976 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 No )
25 slerflex 27689 . . . . 5 (𝑥 No 𝑥 ≤s 𝑥)
2624, 25syl 17 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ≤s 𝑥)
27 breq2 5146 . . . . 5 (𝑦 = 𝑥 → (𝑥 ≤s 𝑦𝑥 ≤s 𝑥))
2827rspcev 3608 . . . 4 ((𝑥 ∈ ( L ‘𝑋) ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
2922, 26, 28syl2anc 583 . . 3 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
3029ralrimiva 3142 . 2 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → ∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
31 ssun2 4169 . . . . . . . 8 𝐵 ⊆ (𝐴𝐵)
32 sstr 3986 . . . . . . . 8 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ( O ‘( bday 𝑋))) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
3331, 32mpan 689 . . . . . . 7 ((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
34333ad2ant1 1131 . . . . . 6 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
3534sselda 3978 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ∈ ( O ‘( bday 𝑋)))
36 simpl3 1191 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑋 = (𝐴 |s 𝐵))
37 simpl2 1190 . . . . . . . . 9 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝐴 <<s 𝐵)
3837, 7syl 17 . . . . . . . 8 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
3938simp3d 1142 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → {(𝐴 |s 𝐵)} <<s 𝐵)
4012a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)})
41 simpr 484 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧𝐵)
4239, 40, 41ssltsepcd 27720 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝐴 |s 𝐵) <s 𝑧)
4336, 42eqbrtrd 5164 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑋 <s 𝑧)
44 rightval 27784 . . . . . . . 8 ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}
4544a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧})
4645eleq2d 2815 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝑧 ∈ ( R ‘𝑋) ↔ 𝑧 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}))
47 rabid 3448 . . . . . 6 (𝑧 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧} ↔ (𝑧 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑧))
4846, 47bitrdi 287 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝑧 ∈ ( R ‘𝑋) ↔ (𝑧 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑧)))
4935, 43, 48mpbir2and 712 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ∈ ( R ‘𝑋))
50 rightssno 27801 . . . . . 6 ( R ‘𝑋) ⊆ No
5150, 49sselid 3976 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 No )
52 slerflex 27689 . . . . 5 (𝑧 No 𝑧 ≤s 𝑧)
5351, 52syl 17 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ≤s 𝑧)
54 breq1 5145 . . . . 5 (𝑤 = 𝑧 → (𝑤 ≤s 𝑧𝑧 ≤s 𝑧))
5554rspcev 3608 . . . 4 ((𝑧 ∈ ( R ‘𝑋) ∧ 𝑧 ≤s 𝑧) → ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5649, 53, 55syl2anc 583 . . 3 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5756ralrimiva 3142 . 2 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5830, 57jca 511 1 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  wrex 3066  {crab 3428  cun 3943  wss 3945  {csn 4624   class class class wbr 5142  cfv 6542  (class class class)co 7414   No csur 27566   <s cslt 27567   bday cbday 27568   ≤s csle 27670   <<s csslt 27706   |s cscut 27708   O cold 27763   L cleft 27765   R cright 27766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-1o 8480  df-2o 8481  df-no 27569  df-slt 27570  df-bday 27571  df-sle 27671  df-sslt 27707  df-scut 27709  df-made 27767  df-old 27768  df-left 27770  df-right 27771
This theorem is referenced by:  cofcutrtime1d  27841  cofcutrtime2d  27842
  Copyright terms: Public domain W3C validator