MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcutrtime Structured version   Visualization version   GIF version

Theorem cofcutrtime 27246
Description: If 𝑋 is the cut of 𝐴 and 𝐵 and all of 𝐴 and 𝐵 are older than 𝑋, then ( L ‘𝑋) is cofinal with 𝐴 and ( R ‘𝑋) is coinitial with 𝐵. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.)
Assertion
Ref Expression
cofcutrtime (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝐵   𝑧,𝐵   𝑧,𝑤,𝑋   𝑥,𝑋,𝑦   𝑧,𝑋
Allowed substitution hints:   𝐴(𝑦,𝑤)   𝐵(𝑦,𝑤)

Proof of Theorem cofcutrtime
StepHypRef Expression
1 ssun1 4132 . . . . . . . 8 𝐴 ⊆ (𝐴𝐵)
2 sstr 3952 . . . . . . . 8 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ( O ‘( bday 𝑋))) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
31, 2mpan 688 . . . . . . 7 ((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
433ad2ant1 1133 . . . . . 6 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
54sselda 3944 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ∈ ( O ‘( bday 𝑋)))
6 simpl2 1192 . . . . . . . . 9 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝐴 <<s 𝐵)
7 scutcut 27140 . . . . . . . . 9 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
86, 7syl 17 . . . . . . . 8 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
98simp2d 1143 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝐴 <<s {(𝐴 |s 𝐵)})
10 simpr 485 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥𝐴)
11 ovex 7390 . . . . . . . . 9 (𝐴 |s 𝐵) ∈ V
1211snid 4622 . . . . . . . 8 (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)}
1312a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)})
149, 10, 13ssltsepcd 27133 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 <s (𝐴 |s 𝐵))
15 simpl3 1193 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑋 = (𝐴 |s 𝐵))
1614, 15breqtrrd 5133 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 <s 𝑋)
17 leftval 27193 . . . . . . . 8 ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}
1817a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
1918eleq2d 2823 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
20 rabid 3427 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋))
2119, 20bitrdi 286 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
225, 16, 21mpbir2and 711 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ∈ ( L ‘𝑋))
23 leftssno 27210 . . . . . 6 ( L ‘𝑋) ⊆ No
2423, 22sselid 3942 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 No )
25 slerflex 27111 . . . . 5 (𝑥 No 𝑥 ≤s 𝑥)
2624, 25syl 17 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ≤s 𝑥)
27 breq2 5109 . . . . 5 (𝑦 = 𝑥 → (𝑥 ≤s 𝑦𝑥 ≤s 𝑥))
2827rspcev 3581 . . . 4 ((𝑥 ∈ ( L ‘𝑋) ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
2922, 26, 28syl2anc 584 . . 3 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
3029ralrimiva 3143 . 2 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → ∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
31 ssun2 4133 . . . . . . . 8 𝐵 ⊆ (𝐴𝐵)
32 sstr 3952 . . . . . . . 8 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ( O ‘( bday 𝑋))) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
3331, 32mpan 688 . . . . . . 7 ((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
34333ad2ant1 1133 . . . . . 6 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
3534sselda 3944 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ∈ ( O ‘( bday 𝑋)))
36 simpl3 1193 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑋 = (𝐴 |s 𝐵))
37 simpl2 1192 . . . . . . . . 9 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝐴 <<s 𝐵)
3837, 7syl 17 . . . . . . . 8 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
3938simp3d 1144 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → {(𝐴 |s 𝐵)} <<s 𝐵)
4012a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)})
41 simpr 485 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧𝐵)
4239, 40, 41ssltsepcd 27133 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝐴 |s 𝐵) <s 𝑧)
4336, 42eqbrtrd 5127 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑋 <s 𝑧)
44 rightval 27194 . . . . . . . 8 ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}
4544a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧})
4645eleq2d 2823 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝑧 ∈ ( R ‘𝑋) ↔ 𝑧 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}))
47 rabid 3427 . . . . . 6 (𝑧 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧} ↔ (𝑧 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑧))
4846, 47bitrdi 286 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝑧 ∈ ( R ‘𝑋) ↔ (𝑧 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑧)))
4935, 43, 48mpbir2and 711 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ∈ ( R ‘𝑋))
50 rightssno 27211 . . . . . 6 ( R ‘𝑋) ⊆ No
5150, 49sselid 3942 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 No )
52 slerflex 27111 . . . . 5 (𝑧 No 𝑧 ≤s 𝑧)
5351, 52syl 17 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ≤s 𝑧)
54 breq1 5108 . . . . 5 (𝑤 = 𝑧 → (𝑤 ≤s 𝑧𝑧 ≤s 𝑧))
5554rspcev 3581 . . . 4 ((𝑧 ∈ ( R ‘𝑋) ∧ 𝑧 ≤s 𝑧) → ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5649, 53, 55syl2anc 584 . . 3 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5756ralrimiva 3143 . 2 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5830, 57jca 512 1 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  cun 3908  wss 3910  {csn 4586   class class class wbr 5105  cfv 6496  (class class class)co 7357   No csur 26988   <s cslt 26989   bday cbday 26990   ≤s csle 27092   <<s csslt 27120   |s cscut 27122   O cold 27173   L cleft 27175   R cright 27176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993  df-sle 27093  df-sslt 27121  df-scut 27123  df-made 27177  df-old 27178  df-left 27180  df-right 27181
This theorem is referenced by:  cofcutrtime1d  27247  cofcutrtime2d  27248
  Copyright terms: Public domain W3C validator