Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofcutrtime Structured version   Visualization version   GIF version

Theorem cofcutrtime 34093
Description: If 𝑋 is the cut of 𝐴 and 𝐵 and all of 𝐴 and 𝐵 are older than 𝑋, then ( L ‘𝑋) is cofinal with 𝐴 and ( R ‘𝑋) is coinitial with 𝐵. Note: we will call a cut where all of the elements of the cut are older than the cut itself a "timely" cut. Part of Theorem 4.02(12) of [Alling] p. 125. (Contributed by Scott Fenton, 27-Sep-2024.)
Assertion
Ref Expression
cofcutrtime (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐴   𝑥,𝐵   𝑧,𝐵   𝑧,𝑤,𝑋   𝑥,𝑋,𝑦   𝑧,𝑋
Allowed substitution hints:   𝐴(𝑦,𝑤)   𝐵(𝑦,𝑤)

Proof of Theorem cofcutrtime
StepHypRef Expression
1 ssun1 4106 . . . . . . . 8 𝐴 ⊆ (𝐴𝐵)
2 sstr 3929 . . . . . . . 8 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ( O ‘( bday 𝑋))) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
31, 2mpan 687 . . . . . . 7 ((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
433ad2ant1 1132 . . . . . 6 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → 𝐴 ⊆ ( O ‘( bday 𝑋)))
54sselda 3921 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ∈ ( O ‘( bday 𝑋)))
6 simpl2 1191 . . . . . . . . 9 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝐴 <<s 𝐵)
7 scutcut 33995 . . . . . . . . 9 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
86, 7syl 17 . . . . . . . 8 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
98simp2d 1142 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝐴 <<s {(𝐴 |s 𝐵)})
10 simpr 485 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥𝐴)
11 ovex 7308 . . . . . . . . 9 (𝐴 |s 𝐵) ∈ V
1211snid 4597 . . . . . . . 8 (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)}
1312a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)})
149, 10, 13ssltsepcd 33988 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 <s (𝐴 |s 𝐵))
15 simpl3 1192 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑋 = (𝐴 |s 𝐵))
1614, 15breqtrrd 5102 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 <s 𝑋)
17 leftval 34047 . . . . . . . 8 ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}
1817a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋})
1918eleq2d 2824 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋}))
20 rabid 3310 . . . . . 6 (𝑥 ∈ {𝑥 ∈ ( O ‘( bday 𝑋)) ∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋))
2119, 20bitrdi 287 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘( bday 𝑋)) ∧ 𝑥 <s 𝑋)))
225, 16, 21mpbir2and 710 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ∈ ( L ‘𝑋))
23 leftssno 34063 . . . . . 6 ( L ‘𝑋) ⊆ No
2423, 22sselid 3919 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 No )
25 slerflex 33966 . . . . 5 (𝑥 No 𝑥 ≤s 𝑥)
2624, 25syl 17 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → 𝑥 ≤s 𝑥)
27 breq2 5078 . . . . 5 (𝑦 = 𝑥 → (𝑥 ≤s 𝑦𝑥 ≤s 𝑥))
2827rspcev 3561 . . . 4 ((𝑥 ∈ ( L ‘𝑋) ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
2922, 26, 28syl2anc 584 . . 3 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥𝐴) → ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
3029ralrimiva 3103 . 2 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → ∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦)
31 ssun2 4107 . . . . . . . 8 𝐵 ⊆ (𝐴𝐵)
32 sstr 3929 . . . . . . . 8 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ( O ‘( bday 𝑋))) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
3331, 32mpan 687 . . . . . . 7 ((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
34333ad2ant1 1132 . . . . . 6 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → 𝐵 ⊆ ( O ‘( bday 𝑋)))
3534sselda 3921 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ∈ ( O ‘( bday 𝑋)))
36 simpl3 1192 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑋 = (𝐴 |s 𝐵))
37 simpl2 1191 . . . . . . . . 9 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝐴 <<s 𝐵)
3837, 7syl 17 . . . . . . . 8 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
3938simp3d 1143 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → {(𝐴 |s 𝐵)} <<s 𝐵)
4012a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)})
41 simpr 485 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧𝐵)
4239, 40, 41ssltsepcd 33988 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝐴 |s 𝐵) <s 𝑧)
4336, 42eqbrtrd 5096 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑋 <s 𝑧)
44 rightval 34048 . . . . . . . 8 ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}
4544a1i 11 . . . . . . 7 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ( R ‘𝑋) = {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧})
4645eleq2d 2824 . . . . . 6 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝑧 ∈ ( R ‘𝑋) ↔ 𝑧 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧}))
47 rabid 3310 . . . . . 6 (𝑧 ∈ {𝑧 ∈ ( O ‘( bday 𝑋)) ∣ 𝑋 <s 𝑧} ↔ (𝑧 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑧))
4846, 47bitrdi 287 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → (𝑧 ∈ ( R ‘𝑋) ↔ (𝑧 ∈ ( O ‘( bday 𝑋)) ∧ 𝑋 <s 𝑧)))
4935, 43, 48mpbir2and 710 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ∈ ( R ‘𝑋))
50 rightssno 34064 . . . . . 6 ( R ‘𝑋) ⊆ No
5150, 49sselid 3919 . . . . 5 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 No )
52 slerflex 33966 . . . . 5 (𝑧 No 𝑧 ≤s 𝑧)
5351, 52syl 17 . . . 4 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → 𝑧 ≤s 𝑧)
54 breq1 5077 . . . . 5 (𝑤 = 𝑧 → (𝑤 ≤s 𝑧𝑧 ≤s 𝑧))
5554rspcev 3561 . . . 4 ((𝑧 ∈ ( R ‘𝑋) ∧ 𝑧 ≤s 𝑧) → ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5649, 53, 55syl2anc 584 . . 3 ((((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧𝐵) → ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5756ralrimiva 3103 . 2 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)
5830, 57jca 512 1 (((𝐴𝐵) ⊆ ( O ‘( bday 𝑋)) ∧ 𝐴 <<s 𝐵𝑋 = (𝐴 |s 𝐵)) → (∀𝑥𝐴𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cun 3885  wss 3887  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275   No csur 33843   <s cslt 33844   bday cbday 33845   ≤s csle 33947   <<s csslt 33975   |s cscut 33977   O cold 34027   L cleft 34029   R cright 34030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-1o 8297  df-2o 8298  df-no 33846  df-slt 33847  df-bday 33848  df-sle 33948  df-sslt 33976  df-scut 33978  df-made 34031  df-old 34032  df-left 34034  df-right 34035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator