Proof of Theorem cofcutrtime
Step | Hyp | Ref
| Expression |
1 | | ssun1 4106 |
. . . . . . . 8
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
2 | | sstr 3929 |
. . . . . . . 8
⊢ ((𝐴 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋)))
→ 𝐴 ⊆ ( O
‘( bday ‘𝑋))) |
3 | 1, 2 | mpan 687 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
→ 𝐴 ⊆ ( O
‘( bday ‘𝑋))) |
4 | 3 | 3ad2ant1 1132 |
. . . . . 6
⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → 𝐴 ⊆ ( O ‘(
bday ‘𝑋))) |
5 | 4 | sselda 3921 |
. . . . 5
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ( O ‘(
bday ‘𝑋))) |
6 | | simpl2 1191 |
. . . . . . . . 9
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐴 <<s 𝐵) |
7 | | scutcut 33995 |
. . . . . . . . 9
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
9 | 8 | simp2d 1142 |
. . . . . . 7
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐴 <<s {(𝐴 |s 𝐵)}) |
10 | | simpr 485 |
. . . . . . 7
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
11 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝐴 |s 𝐵) ∈ V |
12 | 11 | snid 4597 |
. . . . . . . 8
⊢ (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)} |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)}) |
14 | 9, 10, 13 | ssltsepcd 33988 |
. . . . . 6
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 <s (𝐴 |s 𝐵)) |
15 | | simpl3 1192 |
. . . . . 6
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑋 = (𝐴 |s 𝐵)) |
16 | 14, 15 | breqtrrd 5102 |
. . . . 5
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 <s 𝑋) |
17 | | leftval 34047 |
. . . . . . . 8
⊢ ( L
‘𝑋) = {𝑥 ∈ ( O ‘( bday ‘𝑋)) ∣ 𝑥 <s 𝑋} |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → ( L ‘𝑋) = {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋}) |
19 | 18 | eleq2d 2824 |
. . . . . 6
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ ( L ‘𝑋) ↔ 𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋})) |
20 | | rabid 3310 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑥 <s 𝑋} ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋)) |
21 | 19, 20 | bitrdi 287 |
. . . . 5
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ ( L ‘𝑋) ↔ (𝑥 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑥 <s 𝑋))) |
22 | 5, 16, 21 | mpbir2and 710 |
. . . 4
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ( L ‘𝑋)) |
23 | | leftssno 34063 |
. . . . . 6
⊢ ( L
‘𝑋) ⊆ No |
24 | 23, 22 | sselid 3919 |
. . . . 5
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ No
) |
25 | | slerflex 33966 |
. . . . 5
⊢ (𝑥 ∈
No → 𝑥 ≤s
𝑥) |
26 | 24, 25 | syl 17 |
. . . 4
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤s 𝑥) |
27 | | breq2 5078 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑥 ≤s 𝑦 ↔ 𝑥 ≤s 𝑥)) |
28 | 27 | rspcev 3561 |
. . . 4
⊢ ((𝑥 ∈ ( L ‘𝑋) ∧ 𝑥 ≤s 𝑥) → ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦) |
29 | 22, 26, 28 | syl2anc 584 |
. . 3
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦) |
30 | 29 | ralrimiva 3103 |
. 2
⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦) |
31 | | ssun2 4107 |
. . . . . . . 8
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
32 | | sstr 3929 |
. . . . . . . 8
⊢ ((𝐵 ⊆ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋)))
→ 𝐵 ⊆ ( O
‘( bday ‘𝑋))) |
33 | 31, 32 | mpan 687 |
. . . . . . 7
⊢ ((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
→ 𝐵 ⊆ ( O
‘( bday ‘𝑋))) |
34 | 33 | 3ad2ant1 1132 |
. . . . . 6
⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → 𝐵 ⊆ ( O ‘(
bday ‘𝑋))) |
35 | 34 | sselda 3921 |
. . . . 5
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ ( O ‘(
bday ‘𝑋))) |
36 | | simpl3 1192 |
. . . . . 6
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑋 = (𝐴 |s 𝐵)) |
37 | | simpl2 1191 |
. . . . . . . . 9
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝐴 <<s 𝐵) |
38 | 37, 7 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
39 | 38 | simp3d 1143 |
. . . . . . 7
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → {(𝐴 |s 𝐵)} <<s 𝐵) |
40 | 12 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → (𝐴 |s 𝐵) ∈ {(𝐴 |s 𝐵)}) |
41 | | simpr 485 |
. . . . . . 7
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
42 | 39, 40, 41 | ssltsepcd 33988 |
. . . . . 6
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → (𝐴 |s 𝐵) <s 𝑧) |
43 | 36, 42 | eqbrtrd 5096 |
. . . . 5
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑋 <s 𝑧) |
44 | | rightval 34048 |
. . . . . . . 8
⊢ ( R
‘𝑋) = {𝑧 ∈ ( O ‘( bday ‘𝑋)) ∣ 𝑋 <s 𝑧} |
45 | 44 | a1i 11 |
. . . . . . 7
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → ( R ‘𝑋) = {𝑧 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑋 <s 𝑧}) |
46 | 45 | eleq2d 2824 |
. . . . . 6
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ ( R ‘𝑋) ↔ 𝑧 ∈ {𝑧 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑋 <s 𝑧})) |
47 | | rabid 3310 |
. . . . . 6
⊢ (𝑧 ∈ {𝑧 ∈ ( O ‘(
bday ‘𝑋))
∣ 𝑋 <s 𝑧} ↔ (𝑧 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑋 <s 𝑧)) |
48 | 46, 47 | bitrdi 287 |
. . . . 5
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → (𝑧 ∈ ( R ‘𝑋) ↔ (𝑧 ∈ ( O ‘(
bday ‘𝑋))
∧ 𝑋 <s 𝑧))) |
49 | 35, 43, 48 | mpbir2and 710 |
. . . 4
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ ( R ‘𝑋)) |
50 | | rightssno 34064 |
. . . . . 6
⊢ ( R
‘𝑋) ⊆ No |
51 | 50, 49 | sselid 3919 |
. . . . 5
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ No
) |
52 | | slerflex 33966 |
. . . . 5
⊢ (𝑧 ∈
No → 𝑧 ≤s
𝑧) |
53 | 51, 52 | syl 17 |
. . . 4
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ≤s 𝑧) |
54 | | breq1 5077 |
. . . . 5
⊢ (𝑤 = 𝑧 → (𝑤 ≤s 𝑧 ↔ 𝑧 ≤s 𝑧)) |
55 | 54 | rspcev 3561 |
. . . 4
⊢ ((𝑧 ∈ ( R ‘𝑋) ∧ 𝑧 ≤s 𝑧) → ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧) |
56 | 49, 53, 55 | syl2anc 584 |
. . 3
⊢ ((((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) ∧ 𝑧 ∈ 𝐵) → ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧) |
57 | 56 | ralrimiva 3103 |
. 2
⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧) |
58 | 30, 57 | jca 512 |
1
⊢ (((𝐴 ∪ 𝐵) ⊆ ( O ‘(
bday ‘𝑋))
∧ 𝐴 <<s 𝐵 ∧ 𝑋 = (𝐴 |s 𝐵)) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ( L ‘𝑋)𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ ( R ‘𝑋)𝑤 ≤s 𝑧)) |