![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsproplem5 | Structured version Visualization version GIF version |
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐵 is simpler than 𝐴. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
negsproplem4.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
negsproplem4.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
negsproplem4.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
negsproplem5.4 | ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) |
Ref | Expression |
---|---|
negsproplem5 | ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsproplem.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
2 | negsproplem4.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | 1, 2 | negsproplem3 27916 | . . 3 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
4 | 3 | simp2d 1141 | . 2 ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)}) |
5 | negsfn 27910 | . . 3 ⊢ -us Fn No | |
6 | rightssno 27782 | . . 3 ⊢ ( R ‘𝐴) ⊆ No | |
7 | negsproplem5.4 | . . . . 5 ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) | |
8 | bdayelon 27683 | . . . . . 6 ⊢ ( bday ‘𝐴) ∈ On | |
9 | negsproplem4.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
10 | oldbday 27801 | . . . . . 6 ⊢ ((( bday ‘𝐴) ∈ On ∧ 𝐵 ∈ No ) → (𝐵 ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘𝐵) ∈ ( bday ‘𝐴))) | |
11 | 8, 9, 10 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘𝐵) ∈ ( bday ‘𝐴))) |
12 | 7, 11 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ( O ‘( bday ‘𝐴))) |
13 | negsproplem4.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
14 | breq2 5146 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝐴 <s 𝑏 ↔ 𝐴 <s 𝐵)) | |
15 | rightval 27765 | . . . . 5 ⊢ ( R ‘𝐴) = {𝑏 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑏} | |
16 | 14, 15 | elrab2 3683 | . . . 4 ⊢ (𝐵 ∈ ( R ‘𝐴) ↔ (𝐵 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝐵)) |
17 | 12, 13, 16 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ( R ‘𝐴)) |
18 | fnfvima 7239 | . . 3 ⊢ (( -us Fn No ∧ ( R ‘𝐴) ⊆ No ∧ 𝐵 ∈ ( R ‘𝐴)) → ( -us ‘𝐵) ∈ ( -us “ ( R ‘𝐴))) | |
19 | 5, 6, 17, 18 | mp3an12i 1462 | . 2 ⊢ (𝜑 → ( -us ‘𝐵) ∈ ( -us “ ( R ‘𝐴))) |
20 | fvex 6904 | . . . 4 ⊢ ( -us ‘𝐴) ∈ V | |
21 | 20 | snid 4660 | . . 3 ⊢ ( -us ‘𝐴) ∈ {( -us ‘𝐴)} |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → ( -us ‘𝐴) ∈ {( -us ‘𝐴)}) |
23 | 4, 19, 22 | ssltsepcd 27701 | 1 ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∀wral 3056 ∪ cun 3942 ⊆ wss 3944 {csn 4624 class class class wbr 5142 “ cima 5675 Oncon0 6363 Fn wfn 6537 ‘cfv 6542 No csur 27547 <s cslt 27548 bday cbday 27549 <<s csslt 27687 O cold 27744 L cleft 27746 R cright 27747 -us cnegs 27906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-no 27550 df-slt 27551 df-bday 27552 df-sslt 27688 df-scut 27690 df-0s 27731 df-made 27748 df-old 27749 df-left 27751 df-right 27752 df-norec 27829 df-negs 27908 |
This theorem is referenced by: negsproplem7 27920 |
Copyright terms: Public domain | W3C validator |