MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem5 Structured version   Visualization version   GIF version

Theorem negsproplem5 27974
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐵 is simpler than 𝐴. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem4.1 (𝜑𝐴 No )
negsproplem4.2 (𝜑𝐵 No )
negsproplem4.3 (𝜑𝐴 <s 𝐵)
negsproplem5.4 (𝜑 → ( bday 𝐵) ∈ ( bday 𝐴))
Assertion
Ref Expression
negsproplem5 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem5
StepHypRef Expression
1 negsproplem.1 . . . 4 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
2 negsproplem4.1 . . . 4 (𝜑𝐴 No )
31, 2negsproplem3 27972 . . 3 (𝜑 → (( -us𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)} ∧ {( -us𝐴)} <<s ( -us “ ( L ‘𝐴))))
43simp2d 1143 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)})
5 negsfn 27965 . . 3 -us Fn No
6 rightssno 27827 . . 3 ( R ‘𝐴) ⊆ No
7 negsproplem5.4 . . . . 5 (𝜑 → ( bday 𝐵) ∈ ( bday 𝐴))
8 bdayelon 27715 . . . . . 6 ( bday 𝐴) ∈ On
9 negsproplem4.2 . . . . . 6 (𝜑𝐵 No )
10 oldbday 27846 . . . . . 6 ((( bday 𝐴) ∈ On ∧ 𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
118, 9, 10sylancr 587 . . . . 5 (𝜑 → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
127, 11mpbird 257 . . . 4 (𝜑𝐵 ∈ ( O ‘( bday 𝐴)))
13 negsproplem4.3 . . . 4 (𝜑𝐴 <s 𝐵)
14 elright 27807 . . . 4 (𝐵 ∈ ( R ‘𝐴) ↔ (𝐵 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝐵))
1512, 13, 14sylanbrc 583 . . 3 (𝜑𝐵 ∈ ( R ‘𝐴))
16 fnfvima 7167 . . 3 (( -us Fn No ∧ ( R ‘𝐴) ⊆ No 𝐵 ∈ ( R ‘𝐴)) → ( -us𝐵) ∈ ( -us “ ( R ‘𝐴)))
175, 6, 15, 16mp3an12i 1467 . 2 (𝜑 → ( -us𝐵) ∈ ( -us “ ( R ‘𝐴)))
18 fvex 6835 . . . 4 ( -us𝐴) ∈ V
1918snid 4612 . . 3 ( -us𝐴) ∈ {( -us𝐴)}
2019a1i 11 . 2 (𝜑 → ( -us𝐴) ∈ {( -us𝐴)})
214, 17, 20ssltsepcd 27735 1 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  cun 3895  wss 3897  {csn 4573   class class class wbr 5089  cima 5617  Oncon0 6306   Fn wfn 6476  cfv 6481   No csur 27578   <s cslt 27579   bday cbday 27580   <<s csslt 27720   O cold 27784   L cleft 27786   R cright 27787   -us cnegs 27961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27581  df-slt 27582  df-bday 27583  df-sslt 27721  df-scut 27723  df-0s 27768  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-negs 27963
This theorem is referenced by:  negsproplem7  27976
  Copyright terms: Public domain W3C validator