| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsproplem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐵 is simpler than 𝐴. (Contributed by Scott Fenton, 3-Feb-2025.) |
| Ref | Expression |
|---|---|
| negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
| negsproplem4.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| negsproplem4.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| negsproplem4.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
| negsproplem5.4 | ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) |
| Ref | Expression |
|---|---|
| negsproplem5 | ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsproplem.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
| 2 | negsproplem4.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | 1, 2 | negsproplem3 27972 | . . 3 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
| 4 | 3 | simp2d 1143 | . 2 ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)}) |
| 5 | negsfn 27965 | . . 3 ⊢ -us Fn No | |
| 6 | rightssno 27827 | . . 3 ⊢ ( R ‘𝐴) ⊆ No | |
| 7 | negsproplem5.4 | . . . . 5 ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) | |
| 8 | bdayelon 27715 | . . . . . 6 ⊢ ( bday ‘𝐴) ∈ On | |
| 9 | negsproplem4.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 10 | oldbday 27846 | . . . . . 6 ⊢ ((( bday ‘𝐴) ∈ On ∧ 𝐵 ∈ No ) → (𝐵 ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘𝐵) ∈ ( bday ‘𝐴))) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘𝐵) ∈ ( bday ‘𝐴))) |
| 12 | 7, 11 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ( O ‘( bday ‘𝐴))) |
| 13 | negsproplem4.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
| 14 | elright 27807 | . . . 4 ⊢ (𝐵 ∈ ( R ‘𝐴) ↔ (𝐵 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝐵)) | |
| 15 | 12, 13, 14 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ( R ‘𝐴)) |
| 16 | fnfvima 7167 | . . 3 ⊢ (( -us Fn No ∧ ( R ‘𝐴) ⊆ No ∧ 𝐵 ∈ ( R ‘𝐴)) → ( -us ‘𝐵) ∈ ( -us “ ( R ‘𝐴))) | |
| 17 | 5, 6, 15, 16 | mp3an12i 1467 | . 2 ⊢ (𝜑 → ( -us ‘𝐵) ∈ ( -us “ ( R ‘𝐴))) |
| 18 | fvex 6835 | . . . 4 ⊢ ( -us ‘𝐴) ∈ V | |
| 19 | 18 | snid 4612 | . . 3 ⊢ ( -us ‘𝐴) ∈ {( -us ‘𝐴)} |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → ( -us ‘𝐴) ∈ {( -us ‘𝐴)}) |
| 21 | 4, 17, 20 | ssltsepcd 27735 | 1 ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∪ cun 3895 ⊆ wss 3897 {csn 4573 class class class wbr 5089 “ cima 5617 Oncon0 6306 Fn wfn 6476 ‘cfv 6481 No csur 27578 <s cslt 27579 bday cbday 27580 <<s csslt 27720 O cold 27784 L cleft 27786 R cright 27787 -us cnegs 27961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 df-sslt 27721 df-scut 27723 df-0s 27768 df-made 27788 df-old 27789 df-left 27791 df-right 27792 df-norec 27881 df-negs 27963 |
| This theorem is referenced by: negsproplem7 27976 |
| Copyright terms: Public domain | W3C validator |