MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsproplem5 Structured version   Visualization version   GIF version

Theorem negsproplem5 27978
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐵 is simpler than 𝐴. (Contributed by Scott Fenton, 3-Feb-2025.)
Hypotheses
Ref Expression
negsproplem.1 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
negsproplem4.1 (𝜑𝐴 No )
negsproplem4.2 (𝜑𝐵 No )
negsproplem4.3 (𝜑𝐴 <s 𝐵)
negsproplem5.4 (𝜑 → ( bday 𝐵) ∈ ( bday 𝐴))
Assertion
Ref Expression
negsproplem5 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem negsproplem5
StepHypRef Expression
1 negsproplem.1 . . . 4 (𝜑 → ∀𝑥 No 𝑦 No ((( bday 𝑥) ∪ ( bday 𝑦)) ∈ (( bday 𝐴) ∪ ( bday 𝐵)) → (( -us𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us𝑦) <s ( -us𝑥)))))
2 negsproplem4.1 . . . 4 (𝜑𝐴 No )
31, 2negsproplem3 27976 . . 3 (𝜑 → (( -us𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)} ∧ {( -us𝐴)} <<s ( -us “ ( L ‘𝐴))))
43simp2d 1143 . 2 (𝜑 → ( -us “ ( R ‘𝐴)) <<s {( -us𝐴)})
5 negsfn 27969 . . 3 -us Fn No
6 rightssno 27831 . . 3 ( R ‘𝐴) ⊆ No
7 negsproplem5.4 . . . . 5 (𝜑 → ( bday 𝐵) ∈ ( bday 𝐴))
8 bdayelon 27721 . . . . . 6 ( bday 𝐴) ∈ On
9 negsproplem4.2 . . . . . 6 (𝜑𝐵 No )
10 oldbday 27850 . . . . . 6 ((( bday 𝐴) ∈ On ∧ 𝐵 No ) → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
118, 9, 10sylancr 587 . . . . 5 (𝜑 → (𝐵 ∈ ( O ‘( bday 𝐴)) ↔ ( bday 𝐵) ∈ ( bday 𝐴)))
127, 11mpbird 257 . . . 4 (𝜑𝐵 ∈ ( O ‘( bday 𝐴)))
13 negsproplem4.3 . . . 4 (𝜑𝐴 <s 𝐵)
14 elright 27811 . . . 4 (𝐵 ∈ ( R ‘𝐴) ↔ (𝐵 ∈ ( O ‘( bday 𝐴)) ∧ 𝐴 <s 𝐵))
1512, 13, 14sylanbrc 583 . . 3 (𝜑𝐵 ∈ ( R ‘𝐴))
16 fnfvima 7189 . . 3 (( -us Fn No ∧ ( R ‘𝐴) ⊆ No 𝐵 ∈ ( R ‘𝐴)) → ( -us𝐵) ∈ ( -us “ ( R ‘𝐴)))
175, 6, 15, 16mp3an12i 1467 . 2 (𝜑 → ( -us𝐵) ∈ ( -us “ ( R ‘𝐴)))
18 fvex 6853 . . . 4 ( -us𝐴) ∈ V
1918snid 4622 . . 3 ( -us𝐴) ∈ {( -us𝐴)}
2019a1i 11 . 2 (𝜑 → ( -us𝐴) ∈ {( -us𝐴)})
214, 17, 20ssltsepcd 27740 1 (𝜑 → ( -us𝐵) <s ( -us𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  cun 3909  wss 3911  {csn 4585   class class class wbr 5102  cima 5634  Oncon0 6320   Fn wfn 6494  cfv 6499   No csur 27584   <s cslt 27585   bday cbday 27586   <<s csslt 27726   O cold 27788   L cleft 27790   R cright 27791   -us cnegs 27965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-no 27587  df-slt 27588  df-bday 27589  df-sslt 27727  df-scut 27729  df-0s 27773  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec 27885  df-negs 27967
This theorem is referenced by:  negsproplem7  27980
  Copyright terms: Public domain W3C validator