![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negsproplem5 | Structured version Visualization version GIF version |
Description: Lemma for surreal negation. Show the second half of the inductive hypothesis when 𝐵 is simpler than 𝐴. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
negsproplem.1 | ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) |
negsproplem4.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
negsproplem4.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
negsproplem4.3 | ⊢ (𝜑 → 𝐴 <s 𝐵) |
negsproplem5.4 | ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) |
Ref | Expression |
---|---|
negsproplem5 | ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negsproplem.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ No ∀𝑦 ∈ No ((( bday ‘𝑥) ∪ ( bday ‘𝑦)) ∈ (( bday ‘𝐴) ∪ ( bday ‘𝐵)) → (( -us ‘𝑥) ∈ No ∧ (𝑥 <s 𝑦 → ( -us ‘𝑦) <s ( -us ‘𝑥))))) | |
2 | negsproplem4.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
3 | 1, 2 | negsproplem3 28080 | . . 3 ⊢ (𝜑 → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) |
4 | 3 | simp2d 1143 | . 2 ⊢ (𝜑 → ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)}) |
5 | negsfn 28073 | . . 3 ⊢ -us Fn No | |
6 | rightssno 27938 | . . 3 ⊢ ( R ‘𝐴) ⊆ No | |
7 | negsproplem5.4 | . . . . 5 ⊢ (𝜑 → ( bday ‘𝐵) ∈ ( bday ‘𝐴)) | |
8 | bdayelon 27839 | . . . . . 6 ⊢ ( bday ‘𝐴) ∈ On | |
9 | negsproplem4.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
10 | oldbday 27957 | . . . . . 6 ⊢ ((( bday ‘𝐴) ∈ On ∧ 𝐵 ∈ No ) → (𝐵 ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘𝐵) ∈ ( bday ‘𝐴))) | |
11 | 8, 9, 10 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ( O ‘( bday ‘𝐴)) ↔ ( bday ‘𝐵) ∈ ( bday ‘𝐴))) |
12 | 7, 11 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ( O ‘( bday ‘𝐴))) |
13 | negsproplem4.3 | . . . 4 ⊢ (𝜑 → 𝐴 <s 𝐵) | |
14 | breq2 5170 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝐴 <s 𝑏 ↔ 𝐴 <s 𝐵)) | |
15 | rightval 27921 | . . . . 5 ⊢ ( R ‘𝐴) = {𝑏 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑏} | |
16 | 14, 15 | elrab2 3711 | . . . 4 ⊢ (𝐵 ∈ ( R ‘𝐴) ↔ (𝐵 ∈ ( O ‘( bday ‘𝐴)) ∧ 𝐴 <s 𝐵)) |
17 | 12, 13, 16 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ( R ‘𝐴)) |
18 | fnfvima 7270 | . . 3 ⊢ (( -us Fn No ∧ ( R ‘𝐴) ⊆ No ∧ 𝐵 ∈ ( R ‘𝐴)) → ( -us ‘𝐵) ∈ ( -us “ ( R ‘𝐴))) | |
19 | 5, 6, 17, 18 | mp3an12i 1465 | . 2 ⊢ (𝜑 → ( -us ‘𝐵) ∈ ( -us “ ( R ‘𝐴))) |
20 | fvex 6933 | . . . 4 ⊢ ( -us ‘𝐴) ∈ V | |
21 | 20 | snid 4684 | . . 3 ⊢ ( -us ‘𝐴) ∈ {( -us ‘𝐴)} |
22 | 21 | a1i 11 | . 2 ⊢ (𝜑 → ( -us ‘𝐴) ∈ {( -us ‘𝐴)}) |
23 | 4, 19, 22 | ssltsepcd 27857 | 1 ⊢ (𝜑 → ( -us ‘𝐵) <s ( -us ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∪ cun 3974 ⊆ wss 3976 {csn 4648 class class class wbr 5166 “ cima 5703 Oncon0 6395 Fn wfn 6568 ‘cfv 6573 No csur 27702 <s cslt 27703 bday cbday 27704 <<s csslt 27843 O cold 27900 L cleft 27902 R cright 27903 -us cnegs 28069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-0s 27887 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-negs 28071 |
This theorem is referenced by: negsproplem7 28084 |
Copyright terms: Public domain | W3C validator |