![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsidvaldOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsidvald 17132 as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
setsidvaldOLD.e | β’ πΈ = Slot π |
setsidvaldOLD.n | β’ π β β |
setsidvaldOLD.s | β’ (π β π β π) |
setsidvaldOLD.f | β’ (π β Fun π) |
setsidvaldOLD.d | β’ (π β (πΈβndx) β dom π) |
Ref | Expression |
---|---|
setsidvaldOLD | β’ (π β π = (π sSet β¨(πΈβndx), (πΈβπ)β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvaldOLD.s | . . 3 β’ (π β π β π) | |
2 | fvex 6905 | . . 3 β’ (πΈβπ) β V | |
3 | setsval 17100 | . . 3 β’ ((π β π β§ (πΈβπ) β V) β (π sSet β¨(πΈβndx), (πΈβπ)β©) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©})) | |
4 | 1, 2, 3 | sylancl 587 | . 2 β’ (π β (π sSet β¨(πΈβndx), (πΈβπ)β©) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©})) |
5 | setsidvaldOLD.e | . . . . . . 7 β’ πΈ = Slot π | |
6 | setsidvaldOLD.n | . . . . . . 7 β’ π β β | |
7 | 5, 6 | ndxid 17130 | . . . . . 6 β’ πΈ = Slot (πΈβndx) |
8 | 7, 1 | strfvnd 17118 | . . . . 5 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
9 | 8 | opeq2d 4881 | . . . 4 β’ (π β β¨(πΈβndx), (πΈβπ)β© = β¨(πΈβndx), (πβ(πΈβndx))β©) |
10 | 9 | sneqd 4641 | . . 3 β’ (π β {β¨(πΈβndx), (πΈβπ)β©} = {β¨(πΈβndx), (πβ(πΈβndx))β©}) |
11 | 10 | uneq2d 4164 | . 2 β’ (π β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©}) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©})) |
12 | setsidvaldOLD.f | . . 3 β’ (π β Fun π) | |
13 | setsidvaldOLD.d | . . 3 β’ (π β (πΈβndx) β dom π) | |
14 | funresdfunsn 7187 | . . 3 β’ ((Fun π β§ (πΈβndx) β dom π) β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©}) = π) | |
15 | 12, 13, 14 | syl2anc 585 | . 2 β’ (π β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©}) = π) |
16 | 4, 11, 15 | 3eqtrrd 2778 | 1 β’ (π β π = (π sSet β¨(πΈβndx), (πΈβπ)β©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 β cdif 3946 βͺ cun 3947 {csn 4629 β¨cop 4635 dom cdm 5677 βΎ cres 5679 Fun wfun 6538 βcfv 6544 (class class class)co 7409 βcn 12212 sSet csts 17096 Slot cslot 17114 ndxcnx 17126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-sets 17097 df-slot 17115 df-ndx 17127 |
This theorem is referenced by: ressval3dOLD 17192 |
Copyright terms: Public domain | W3C validator |