Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > setsidvaldOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsidvald 16900 as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
setsidvaldOLD.e | ⊢ 𝐸 = Slot 𝑁 |
setsidvaldOLD.n | ⊢ 𝑁 ∈ ℕ |
setsidvaldOLD.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidvaldOLD.f | ⊢ (𝜑 → Fun 𝑆) |
setsidvaldOLD.d | ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) |
Ref | Expression |
---|---|
setsidvaldOLD | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvaldOLD.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | fvex 6787 | . . 3 ⊢ (𝐸‘𝑆) ∈ V | |
3 | setsval 16868 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) | |
4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) |
5 | setsidvaldOLD.e | . . . . . . 7 ⊢ 𝐸 = Slot 𝑁 | |
6 | setsidvaldOLD.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
7 | 5, 6 | ndxid 16898 | . . . . . 6 ⊢ 𝐸 = Slot (𝐸‘ndx) |
8 | 7, 1 | strfvnd 16886 | . . . . 5 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
9 | 8 | opeq2d 4811 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), (𝐸‘𝑆)〉 = 〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉) |
10 | 9 | sneqd 4573 | . . 3 ⊢ (𝜑 → {〈(𝐸‘ndx), (𝐸‘𝑆)〉} = {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) |
11 | 10 | uneq2d 4097 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉})) |
12 | setsidvaldOLD.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
13 | setsidvaldOLD.d | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) | |
14 | funresdfunsn 7061 | . . 3 ⊢ ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) | |
15 | 12, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) |
16 | 4, 11, 15 | 3eqtrrd 2783 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 {csn 4561 〈cop 4567 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 ℕcn 11973 sSet csts 16864 Slot cslot 16882 ndxcnx 16894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-sets 16865 df-slot 16883 df-ndx 16895 |
This theorem is referenced by: ressval3dOLD 16957 |
Copyright terms: Public domain | W3C validator |