![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsidvaldOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsidvald 17159 as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
setsidvaldOLD.e | β’ πΈ = Slot π |
setsidvaldOLD.n | β’ π β β |
setsidvaldOLD.s | β’ (π β π β π) |
setsidvaldOLD.f | β’ (π β Fun π) |
setsidvaldOLD.d | β’ (π β (πΈβndx) β dom π) |
Ref | Expression |
---|---|
setsidvaldOLD | β’ (π β π = (π sSet β¨(πΈβndx), (πΈβπ)β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvaldOLD.s | . . 3 β’ (π β π β π) | |
2 | fvex 6904 | . . 3 β’ (πΈβπ) β V | |
3 | setsval 17127 | . . 3 β’ ((π β π β§ (πΈβπ) β V) β (π sSet β¨(πΈβndx), (πΈβπ)β©) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©})) | |
4 | 1, 2, 3 | sylancl 585 | . 2 β’ (π β (π sSet β¨(πΈβndx), (πΈβπ)β©) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©})) |
5 | setsidvaldOLD.e | . . . . . . 7 β’ πΈ = Slot π | |
6 | setsidvaldOLD.n | . . . . . . 7 β’ π β β | |
7 | 5, 6 | ndxid 17157 | . . . . . 6 β’ πΈ = Slot (πΈβndx) |
8 | 7, 1 | strfvnd 17145 | . . . . 5 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
9 | 8 | opeq2d 4876 | . . . 4 β’ (π β β¨(πΈβndx), (πΈβπ)β© = β¨(πΈβndx), (πβ(πΈβndx))β©) |
10 | 9 | sneqd 4636 | . . 3 β’ (π β {β¨(πΈβndx), (πΈβπ)β©} = {β¨(πΈβndx), (πβ(πΈβndx))β©}) |
11 | 10 | uneq2d 4159 | . 2 β’ (π β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©}) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©})) |
12 | setsidvaldOLD.f | . . 3 β’ (π β Fun π) | |
13 | setsidvaldOLD.d | . . 3 β’ (π β (πΈβndx) β dom π) | |
14 | funresdfunsn 7192 | . . 3 β’ ((Fun π β§ (πΈβndx) β dom π) β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©}) = π) | |
15 | 12, 13, 14 | syl2anc 583 | . 2 β’ (π β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©}) = π) |
16 | 4, 11, 15 | 3eqtrrd 2772 | 1 β’ (π β π = (π sSet β¨(πΈβndx), (πΈβπ)β©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 Vcvv 3469 β cdif 3941 βͺ cun 3942 {csn 4624 β¨cop 4630 dom cdm 5672 βΎ cres 5674 Fun wfun 6536 βcfv 6542 (class class class)co 7414 βcn 12234 sSet csts 17123 Slot cslot 17141 ndxcnx 17153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-1cn 11188 ax-addcl 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12235 df-sets 17124 df-slot 17142 df-ndx 17154 |
This theorem is referenced by: ressval3dOLD 17219 |
Copyright terms: Public domain | W3C validator |