![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsidvaldOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsidvald 17162 as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
setsidvaldOLD.e | β’ πΈ = Slot π |
setsidvaldOLD.n | β’ π β β |
setsidvaldOLD.s | β’ (π β π β π) |
setsidvaldOLD.f | β’ (π β Fun π) |
setsidvaldOLD.d | β’ (π β (πΈβndx) β dom π) |
Ref | Expression |
---|---|
setsidvaldOLD | β’ (π β π = (π sSet β¨(πΈβndx), (πΈβπ)β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvaldOLD.s | . . 3 β’ (π β π β π) | |
2 | fvex 6903 | . . 3 β’ (πΈβπ) β V | |
3 | setsval 17130 | . . 3 β’ ((π β π β§ (πΈβπ) β V) β (π sSet β¨(πΈβndx), (πΈβπ)β©) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©})) | |
4 | 1, 2, 3 | sylancl 584 | . 2 β’ (π β (π sSet β¨(πΈβndx), (πΈβπ)β©) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©})) |
5 | setsidvaldOLD.e | . . . . . . 7 β’ πΈ = Slot π | |
6 | setsidvaldOLD.n | . . . . . . 7 β’ π β β | |
7 | 5, 6 | ndxid 17160 | . . . . . 6 β’ πΈ = Slot (πΈβndx) |
8 | 7, 1 | strfvnd 17148 | . . . . 5 β’ (π β (πΈβπ) = (πβ(πΈβndx))) |
9 | 8 | opeq2d 4877 | . . . 4 β’ (π β β¨(πΈβndx), (πΈβπ)β© = β¨(πΈβndx), (πβ(πΈβndx))β©) |
10 | 9 | sneqd 4637 | . . 3 β’ (π β {β¨(πΈβndx), (πΈβπ)β©} = {β¨(πΈβndx), (πβ(πΈβndx))β©}) |
11 | 10 | uneq2d 4157 | . 2 β’ (π β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πΈβπ)β©}) = ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©})) |
12 | setsidvaldOLD.f | . . 3 β’ (π β Fun π) | |
13 | setsidvaldOLD.d | . . 3 β’ (π β (πΈβndx) β dom π) | |
14 | funresdfunsn 7192 | . . 3 β’ ((Fun π β§ (πΈβndx) β dom π) β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©}) = π) | |
15 | 12, 13, 14 | syl2anc 582 | . 2 β’ (π β ((π βΎ (V β {(πΈβndx)})) βͺ {β¨(πΈβndx), (πβ(πΈβndx))β©}) = π) |
16 | 4, 11, 15 | 3eqtrrd 2770 | 1 β’ (π β π = (π sSet β¨(πΈβndx), (πΈβπ)β©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3463 β cdif 3938 βͺ cun 3939 {csn 4625 β¨cop 4631 dom cdm 5673 βΎ cres 5675 Fun wfun 6537 βcfv 6543 (class class class)co 7413 βcn 12237 sSet csts 17126 Slot cslot 17144 ndxcnx 17156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-1cn 11191 ax-addcl 11193 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12238 df-sets 17127 df-slot 17145 df-ndx 17157 |
This theorem is referenced by: ressval3dOLD 17222 |
Copyright terms: Public domain | W3C validator |