MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif Structured version   Visualization version   GIF version

Theorem infdif 9896
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdif
StepHypRef Expression
1 simp1 1134 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
2 difss 4062 . . 3 (𝐴𝐵) ⊆ 𝐴
3 ssdomg 8741 . . 3 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
41, 2, 3mpisyl 21 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ 𝐴)
5 sdomdom 8723 . . . . . . . . 9 (𝐵𝐴𝐵𝐴)
653ad2ant3 1133 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
7 numdom 9725 . . . . . . . 8 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
81, 6, 7syl2anc 583 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ dom card)
9 unnum 9883 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
101, 8, 9syl2anc 583 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
11 ssun1 4102 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
12 ssdomg 8741 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
1310, 11, 12mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
14 undif1 4406 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
15 ssnum 9726 . . . . . . . 8 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ dom card)
161, 2, 15sylancl 585 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
17 undjudom 9854 . . . . . . 7 (((𝐴𝐵) ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
1816, 8, 17syl2anc 583 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
1914, 18eqbrtrrid 5106 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
20 domtr 8748 . . . . 5 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵)) → 𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵))
2113, 19, 20syl2anc 583 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵))
22 simp3 1136 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
23 sdomdom 8723 . . . . . . . . 9 ((𝐴𝐵) ≺ 𝐵 → (𝐴𝐵) ≼ 𝐵)
24 relsdom 8698 . . . . . . . . . 10 Rel ≺
2524brrelex2i 5635 . . . . . . . . 9 ((𝐴𝐵) ≺ 𝐵𝐵 ∈ V)
26 djudom1 9869 . . . . . . . . 9 (((𝐴𝐵) ≼ 𝐵𝐵 ∈ V) → ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵))
2723, 25, 26syl2anc 583 . . . . . . . 8 ((𝐴𝐵) ≺ 𝐵 → ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵))
28 domtr 8748 . . . . . . . . . . 11 ((𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) ∧ ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵)) → 𝐴 ≼ (𝐵𝐵))
2928ex 412 . . . . . . . . . 10 (𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴 ≼ (𝐵𝐵)))
3021, 29syl 17 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴 ≼ (𝐵𝐵)))
31 simp2 1135 . . . . . . . . . . . 12 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
32 domtr 8748 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ≼ (𝐵𝐵)) → ω ≼ (𝐵𝐵))
3332ex 412 . . . . . . . . . . . 12 (ω ≼ 𝐴 → (𝐴 ≼ (𝐵𝐵) → ω ≼ (𝐵𝐵)))
3431, 33syl 17 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → ω ≼ (𝐵𝐵)))
35 djuinf 9875 . . . . . . . . . . . . 13 (ω ≼ 𝐵 ↔ ω ≼ (𝐵𝐵))
3635biimpri 227 . . . . . . . . . . . 12 (ω ≼ (𝐵𝐵) → ω ≼ 𝐵)
37 domrefg 8730 . . . . . . . . . . . . 13 (𝐵 ∈ dom card → 𝐵𝐵)
38 infdjuabs 9893 . . . . . . . . . . . . . . 15 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐵𝐵) → (𝐵𝐵) ≈ 𝐵)
39383com23 1124 . . . . . . . . . . . . . 14 ((𝐵 ∈ dom card ∧ 𝐵𝐵 ∧ ω ≼ 𝐵) → (𝐵𝐵) ≈ 𝐵)
40393expia 1119 . . . . . . . . . . . . 13 ((𝐵 ∈ dom card ∧ 𝐵𝐵) → (ω ≼ 𝐵 → (𝐵𝐵) ≈ 𝐵))
4137, 40mpdan 683 . . . . . . . . . . . 12 (𝐵 ∈ dom card → (ω ≼ 𝐵 → (𝐵𝐵) ≈ 𝐵))
428, 36, 41syl2im 40 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (ω ≼ (𝐵𝐵) → (𝐵𝐵) ≈ 𝐵))
4334, 42syld 47 . . . . . . . . . 10 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → (𝐵𝐵) ≈ 𝐵))
44 domen2 8856 . . . . . . . . . . 11 ((𝐵𝐵) ≈ 𝐵 → (𝐴 ≼ (𝐵𝐵) ↔ 𝐴𝐵))
4544biimpcd 248 . . . . . . . . . 10 (𝐴 ≼ (𝐵𝐵) → ((𝐵𝐵) ≈ 𝐵𝐴𝐵))
4643, 45sylcom 30 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → 𝐴𝐵))
4730, 46syld 47 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴𝐵))
48 domnsym 8839 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐵𝐴)
4927, 47, 48syl56 36 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ≺ 𝐵 → ¬ 𝐵𝐴))
5022, 49mt2d 136 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≺ 𝐵)
51 domtri2 9678 . . . . . . 7 ((𝐵 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
528, 16, 51syl2anc 583 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
5350, 52mpbird 256 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≼ (𝐴𝐵))
541difexd 5248 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ V)
55 djudom2 9870 . . . . 5 ((𝐵 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
5653, 54, 55syl2anc 583 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
57 domtr 8748 . . . 4 ((𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) ∧ ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵))) → 𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
5821, 56, 57syl2anc 583 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
59 domtr 8748 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵))) → ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
6031, 58, 59syl2anc 583 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
61 djuinf 9875 . . . . 5 (ω ≼ (𝐴𝐵) ↔ ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
6260, 61sylibr 233 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴𝐵))
63 domrefg 8730 . . . . 5 ((𝐴𝐵) ∈ dom card → (𝐴𝐵) ≼ (𝐴𝐵))
6416, 63syl 17 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
65 infdjuabs 9893 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵))
6616, 62, 64, 65syl3anc 1369 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵))
67 domentr 8754 . . 3 ((𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)) ∧ ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵)) → 𝐴 ≼ (𝐴𝐵))
6858, 66, 67syl2anc 583 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
69 sbth 8833 . 2 (((𝐴𝐵) ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ 𝐴)
704, 68, 69syl2anc 583 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1085  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  wss 3883   class class class wbr 5070  dom cdm 5580  ωcom 7687  cen 8688  cdom 8689  csdm 8690  cdju 9587  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-dju 9590  df-card 9628
This theorem is referenced by:  infdif2  9897  alephsuc3  10267  aleph1irr  15883
  Copyright terms: Public domain W3C validator