MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif Structured version   Visualization version   GIF version

Theorem infdif 10227
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdif
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
2 difss 4116 . . 3 (𝐴𝐵) ⊆ 𝐴
3 ssdomg 9019 . . 3 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
41, 2, 3mpisyl 21 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ 𝐴)
5 sdomdom 8999 . . . . . . . . 9 (𝐵𝐴𝐵𝐴)
653ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
7 numdom 10057 . . . . . . . 8 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
81, 6, 7syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ dom card)
9 unnum 10216 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
101, 8, 9syl2anc 584 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
11 ssun1 4158 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
12 ssdomg 9019 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
1310, 11, 12mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
14 undif1 4456 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
15 ssnum 10058 . . . . . . . 8 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ dom card)
161, 2, 15sylancl 586 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
17 undjudom 10187 . . . . . . 7 (((𝐴𝐵) ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
1816, 8, 17syl2anc 584 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
1914, 18eqbrtrrid 5160 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
20 domtr 9026 . . . . 5 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵)) → 𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵))
2113, 19, 20syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵))
22 simp3 1138 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
23 sdomdom 8999 . . . . . . . . 9 ((𝐴𝐵) ≺ 𝐵 → (𝐴𝐵) ≼ 𝐵)
24 relsdom 8971 . . . . . . . . . 10 Rel ≺
2524brrelex2i 5716 . . . . . . . . 9 ((𝐴𝐵) ≺ 𝐵𝐵 ∈ V)
26 djudom1 10202 . . . . . . . . 9 (((𝐴𝐵) ≼ 𝐵𝐵 ∈ V) → ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵))
2723, 25, 26syl2anc 584 . . . . . . . 8 ((𝐴𝐵) ≺ 𝐵 → ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵))
28 domtr 9026 . . . . . . . . . . 11 ((𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) ∧ ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵)) → 𝐴 ≼ (𝐵𝐵))
2928ex 412 . . . . . . . . . 10 (𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴 ≼ (𝐵𝐵)))
3021, 29syl 17 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴 ≼ (𝐵𝐵)))
31 simp2 1137 . . . . . . . . . . . 12 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
32 domtr 9026 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ≼ (𝐵𝐵)) → ω ≼ (𝐵𝐵))
3332ex 412 . . . . . . . . . . . 12 (ω ≼ 𝐴 → (𝐴 ≼ (𝐵𝐵) → ω ≼ (𝐵𝐵)))
3431, 33syl 17 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → ω ≼ (𝐵𝐵)))
35 djuinf 10208 . . . . . . . . . . . . 13 (ω ≼ 𝐵 ↔ ω ≼ (𝐵𝐵))
3635biimpri 228 . . . . . . . . . . . 12 (ω ≼ (𝐵𝐵) → ω ≼ 𝐵)
37 domrefg 9006 . . . . . . . . . . . . 13 (𝐵 ∈ dom card → 𝐵𝐵)
38 infdjuabs 10224 . . . . . . . . . . . . . . 15 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐵𝐵) → (𝐵𝐵) ≈ 𝐵)
39383com23 1126 . . . . . . . . . . . . . 14 ((𝐵 ∈ dom card ∧ 𝐵𝐵 ∧ ω ≼ 𝐵) → (𝐵𝐵) ≈ 𝐵)
40393expia 1121 . . . . . . . . . . . . 13 ((𝐵 ∈ dom card ∧ 𝐵𝐵) → (ω ≼ 𝐵 → (𝐵𝐵) ≈ 𝐵))
4137, 40mpdan 687 . . . . . . . . . . . 12 (𝐵 ∈ dom card → (ω ≼ 𝐵 → (𝐵𝐵) ≈ 𝐵))
428, 36, 41syl2im 40 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (ω ≼ (𝐵𝐵) → (𝐵𝐵) ≈ 𝐵))
4334, 42syld 47 . . . . . . . . . 10 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → (𝐵𝐵) ≈ 𝐵))
44 domen2 9139 . . . . . . . . . . 11 ((𝐵𝐵) ≈ 𝐵 → (𝐴 ≼ (𝐵𝐵) ↔ 𝐴𝐵))
4544biimpcd 249 . . . . . . . . . 10 (𝐴 ≼ (𝐵𝐵) → ((𝐵𝐵) ≈ 𝐵𝐴𝐵))
4643, 45sylcom 30 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → 𝐴𝐵))
4730, 46syld 47 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴𝐵))
48 domnsym 9118 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐵𝐴)
4927, 47, 48syl56 36 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ≺ 𝐵 → ¬ 𝐵𝐴))
5022, 49mt2d 136 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≺ 𝐵)
51 domtri2 10008 . . . . . . 7 ((𝐵 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
528, 16, 51syl2anc 584 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
5350, 52mpbird 257 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≼ (𝐴𝐵))
541difexd 5306 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ V)
55 djudom2 10203 . . . . 5 ((𝐵 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
5653, 54, 55syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
57 domtr 9026 . . . 4 ((𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) ∧ ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵))) → 𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
5821, 56, 57syl2anc 584 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
59 domtr 9026 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵))) → ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
6031, 58, 59syl2anc 584 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
61 djuinf 10208 . . . . 5 (ω ≼ (𝐴𝐵) ↔ ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
6260, 61sylibr 234 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴𝐵))
63 domrefg 9006 . . . . 5 ((𝐴𝐵) ∈ dom card → (𝐴𝐵) ≼ (𝐴𝐵))
6416, 63syl 17 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
65 infdjuabs 10224 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵))
6616, 62, 64, 65syl3anc 1373 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵))
67 domentr 9032 . . 3 ((𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)) ∧ ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵)) → 𝐴 ≼ (𝐴𝐵))
6858, 66, 67syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
69 sbth 9112 . 2 (((𝐴𝐵) ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ 𝐴)
704, 68, 69syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086  wcel 2109  Vcvv 3464  cdif 3928  cun 3929  wss 3931   class class class wbr 5124  dom cdm 5659  ωcom 7866  cen 8961  cdom 8962  csdm 8963  cdju 9917  cardccrd 9954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-dju 9920  df-card 9958
This theorem is referenced by:  infdif2  10228  alephsuc3  10599  aleph1irr  16269
  Copyright terms: Public domain W3C validator