MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif Structured version   Visualization version   GIF version

Theorem infdif 10161
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)

Proof of Theorem infdif
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ∈ dom card)
2 difss 4099 . . 3 (𝐴𝐵) ⊆ 𝐴
3 ssdomg 8971 . . 3 (𝐴 ∈ dom card → ((𝐴𝐵) ⊆ 𝐴 → (𝐴𝐵) ≼ 𝐴))
41, 2, 3mpisyl 21 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ 𝐴)
5 sdomdom 8951 . . . . . . . . 9 (𝐵𝐴𝐵𝐴)
653ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
7 numdom 9991 . . . . . . . 8 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
81, 6, 7syl2anc 584 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ∈ dom card)
9 unnum 10150 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴𝐵) ∈ dom card)
101, 8, 9syl2anc 584 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
11 ssun1 4141 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
12 ssdomg 8971 . . . . . 6 ((𝐴𝐵) ∈ dom card → (𝐴 ⊆ (𝐴𝐵) → 𝐴 ≼ (𝐴𝐵)))
1310, 11, 12mpisyl 21 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
14 undif1 4439 . . . . . 6 ((𝐴𝐵) ∪ 𝐵) = (𝐴𝐵)
15 ssnum 9992 . . . . . . . 8 ((𝐴 ∈ dom card ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ dom card)
161, 2, 15sylancl 586 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ dom card)
17 undjudom 10121 . . . . . . 7 (((𝐴𝐵) ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
1816, 8, 17syl2anc 584 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ∪ 𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
1914, 18eqbrtrrid 5143 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵))
20 domtr 8978 . . . . 5 ((𝐴 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ ((𝐴𝐵) ⊔ 𝐵)) → 𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵))
2113, 19, 20syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵))
22 simp3 1138 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵𝐴)
23 sdomdom 8951 . . . . . . . . 9 ((𝐴𝐵) ≺ 𝐵 → (𝐴𝐵) ≼ 𝐵)
24 relsdom 8925 . . . . . . . . . 10 Rel ≺
2524brrelex2i 5695 . . . . . . . . 9 ((𝐴𝐵) ≺ 𝐵𝐵 ∈ V)
26 djudom1 10136 . . . . . . . . 9 (((𝐴𝐵) ≼ 𝐵𝐵 ∈ V) → ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵))
2723, 25, 26syl2anc 584 . . . . . . . 8 ((𝐴𝐵) ≺ 𝐵 → ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵))
28 domtr 8978 . . . . . . . . . . 11 ((𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) ∧ ((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵)) → 𝐴 ≼ (𝐵𝐵))
2928ex 412 . . . . . . . . . 10 (𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴 ≼ (𝐵𝐵)))
3021, 29syl 17 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴 ≼ (𝐵𝐵)))
31 simp2 1137 . . . . . . . . . . . 12 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ 𝐴)
32 domtr 8978 . . . . . . . . . . . . 13 ((ω ≼ 𝐴𝐴 ≼ (𝐵𝐵)) → ω ≼ (𝐵𝐵))
3332ex 412 . . . . . . . . . . . 12 (ω ≼ 𝐴 → (𝐴 ≼ (𝐵𝐵) → ω ≼ (𝐵𝐵)))
3431, 33syl 17 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → ω ≼ (𝐵𝐵)))
35 djuinf 10142 . . . . . . . . . . . . 13 (ω ≼ 𝐵 ↔ ω ≼ (𝐵𝐵))
3635biimpri 228 . . . . . . . . . . . 12 (ω ≼ (𝐵𝐵) → ω ≼ 𝐵)
37 domrefg 8958 . . . . . . . . . . . . 13 (𝐵 ∈ dom card → 𝐵𝐵)
38 infdjuabs 10158 . . . . . . . . . . . . . . 15 ((𝐵 ∈ dom card ∧ ω ≼ 𝐵𝐵𝐵) → (𝐵𝐵) ≈ 𝐵)
39383com23 1126 . . . . . . . . . . . . . 14 ((𝐵 ∈ dom card ∧ 𝐵𝐵 ∧ ω ≼ 𝐵) → (𝐵𝐵) ≈ 𝐵)
40393expia 1121 . . . . . . . . . . . . 13 ((𝐵 ∈ dom card ∧ 𝐵𝐵) → (ω ≼ 𝐵 → (𝐵𝐵) ≈ 𝐵))
4137, 40mpdan 687 . . . . . . . . . . . 12 (𝐵 ∈ dom card → (ω ≼ 𝐵 → (𝐵𝐵) ≈ 𝐵))
428, 36, 41syl2im 40 . . . . . . . . . . 11 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (ω ≼ (𝐵𝐵) → (𝐵𝐵) ≈ 𝐵))
4334, 42syld 47 . . . . . . . . . 10 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → (𝐵𝐵) ≈ 𝐵))
44 domen2 9084 . . . . . . . . . . 11 ((𝐵𝐵) ≈ 𝐵 → (𝐴 ≼ (𝐵𝐵) ↔ 𝐴𝐵))
4544biimpcd 249 . . . . . . . . . 10 (𝐴 ≼ (𝐵𝐵) → ((𝐵𝐵) ≈ 𝐵𝐴𝐵))
4643, 45sylcom 30 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴 ≼ (𝐵𝐵) → 𝐴𝐵))
4730, 46syld 47 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (((𝐴𝐵) ⊔ 𝐵) ≼ (𝐵𝐵) → 𝐴𝐵))
48 domnsym 9067 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐵𝐴)
4927, 47, 48syl56 36 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ≺ 𝐵 → ¬ 𝐵𝐴))
5022, 49mt2d 136 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ¬ (𝐴𝐵) ≺ 𝐵)
51 domtri2 9942 . . . . . . 7 ((𝐵 ∈ dom card ∧ (𝐴𝐵) ∈ dom card) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
528, 16, 51syl2anc 584 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐵 ≼ (𝐴𝐵) ↔ ¬ (𝐴𝐵) ≺ 𝐵))
5350, 52mpbird 257 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐵 ≼ (𝐴𝐵))
541difexd 5286 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ∈ V)
55 djudom2 10137 . . . . 5 ((𝐵 ≼ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
5653, 54, 55syl2anc 584 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
57 domtr 8978 . . . 4 ((𝐴 ≼ ((𝐴𝐵) ⊔ 𝐵) ∧ ((𝐴𝐵) ⊔ 𝐵) ≼ ((𝐴𝐵) ⊔ (𝐴𝐵))) → 𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
5821, 56, 57syl2anc 584 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
59 domtr 8978 . . . . . 6 ((ω ≼ 𝐴𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵))) → ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
6031, 58, 59syl2anc 584 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
61 djuinf 10142 . . . . 5 (ω ≼ (𝐴𝐵) ↔ ω ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)))
6260, 61sylibr 234 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ω ≼ (𝐴𝐵))
63 domrefg 8958 . . . . 5 ((𝐴𝐵) ∈ dom card → (𝐴𝐵) ≼ (𝐴𝐵))
6416, 63syl 17 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≼ (𝐴𝐵))
65 infdjuabs 10158 . . . 4 (((𝐴𝐵) ∈ dom card ∧ ω ≼ (𝐴𝐵) ∧ (𝐴𝐵) ≼ (𝐴𝐵)) → ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵))
6616, 62, 64, 65syl3anc 1373 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵))
67 domentr 8984 . . 3 ((𝐴 ≼ ((𝐴𝐵) ⊔ (𝐴𝐵)) ∧ ((𝐴𝐵) ⊔ (𝐴𝐵)) ≈ (𝐴𝐵)) → 𝐴 ≼ (𝐴𝐵))
6858, 66, 67syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → 𝐴 ≼ (𝐴𝐵))
69 sbth 9061 . 2 (((𝐴𝐵) ≼ 𝐴𝐴 ≼ (𝐴𝐵)) → (𝐴𝐵) ≈ 𝐴)
704, 68, 69syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴) → (𝐴𝐵) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  wss 3914   class class class wbr 5107  dom cdm 5638  ωcom 7842  cen 8915  cdom 8916  csdm 8917  cdju 9851  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-dju 9854  df-card 9892
This theorem is referenced by:  infdif2  10162  alephsuc3  10533  aleph1irr  16214
  Copyright terms: Public domain W3C validator