Proof of Theorem infdif
Step | Hyp | Ref
| Expression |
1 | | simp1 1138 |
. . 3
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ∈ dom card) |
2 | | difss 4046 |
. . 3
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 |
3 | | ssdomg 8674 |
. . 3
⊢ (𝐴 ∈ dom card → ((𝐴 ∖ 𝐵) ⊆ 𝐴 → (𝐴 ∖ 𝐵) ≼ 𝐴)) |
4 | 1, 2, 3 | mpisyl 21 |
. 2
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≼ 𝐴) |
5 | | sdomdom 8656 |
. . . . . . . . 9
⊢ (𝐵 ≺ 𝐴 → 𝐵 ≼ 𝐴) |
6 | 5 | 3ad2ant3 1137 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≼ 𝐴) |
7 | | numdom 9652 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) |
8 | 1, 6, 7 | syl2anc 587 |
. . . . . . 7
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ∈ dom card) |
9 | | unnum 9810 |
. . . . . . 7
⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ∪ 𝐵) ∈ dom card) |
10 | 1, 8, 9 | syl2anc 587 |
. . . . . 6
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∪ 𝐵) ∈ dom card) |
11 | | ssun1 4086 |
. . . . . 6
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
12 | | ssdomg 8674 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) ∈ dom card → (𝐴 ⊆ (𝐴 ∪ 𝐵) → 𝐴 ≼ (𝐴 ∪ 𝐵))) |
13 | 10, 11, 12 | mpisyl 21 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≼ (𝐴 ∪ 𝐵)) |
14 | | undif1 4390 |
. . . . . 6
⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
15 | | ssnum 9653 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom card ∧ (𝐴 ∖ 𝐵) ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ dom card) |
16 | 1, 2, 15 | sylancl 589 |
. . . . . . 7
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ∈ dom card) |
17 | | undjudom 9781 |
. . . . . . 7
⊢ (((𝐴 ∖ 𝐵) ∈ dom card ∧ 𝐵 ∈ dom card) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵)) |
18 | 16, 8, 17 | syl2anc 587 |
. . . . . 6
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ((𝐴 ∖ 𝐵) ∪ 𝐵) ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵)) |
19 | 14, 18 | eqbrtrrid 5089 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∪ 𝐵) ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵)) |
20 | | domtr 8681 |
. . . . 5
⊢ ((𝐴 ≼ (𝐴 ∪ 𝐵) ∧ (𝐴 ∪ 𝐵) ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵)) → 𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵)) |
21 | 13, 19, 20 | syl2anc 587 |
. . . 4
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵)) |
22 | | simp3 1140 |
. . . . . . 7
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≺ 𝐴) |
23 | | sdomdom 8656 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝐵) ≺ 𝐵 → (𝐴 ∖ 𝐵) ≼ 𝐵) |
24 | | relsdom 8633 |
. . . . . . . . . 10
⊢ Rel
≺ |
25 | 24 | brrelex2i 5606 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝐵) ≺ 𝐵 → 𝐵 ∈ V) |
26 | | djudom1 9796 |
. . . . . . . . 9
⊢ (((𝐴 ∖ 𝐵) ≼ 𝐵 ∧ 𝐵 ∈ V) → ((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ (𝐵 ⊔ 𝐵)) |
27 | 23, 25, 26 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝐴 ∖ 𝐵) ≺ 𝐵 → ((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ (𝐵 ⊔ 𝐵)) |
28 | | domtr 8681 |
. . . . . . . . . . 11
⊢ ((𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵) ∧ ((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ (𝐵 ⊔ 𝐵)) → 𝐴 ≼ (𝐵 ⊔ 𝐵)) |
29 | 28 | ex 416 |
. . . . . . . . . 10
⊢ (𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵) → (((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ (𝐵 ⊔ 𝐵) → 𝐴 ≼ (𝐵 ⊔ 𝐵))) |
30 | 21, 29 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ (𝐵 ⊔ 𝐵) → 𝐴 ≼ (𝐵 ⊔ 𝐵))) |
31 | | simp2 1139 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ω ≼ 𝐴) |
32 | | domtr 8681 |
. . . . . . . . . . . . 13
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ≼ (𝐵 ⊔ 𝐵)) → ω ≼ (𝐵 ⊔ 𝐵)) |
33 | 32 | ex 416 |
. . . . . . . . . . . 12
⊢ (ω
≼ 𝐴 → (𝐴 ≼ (𝐵 ⊔ 𝐵) → ω ≼ (𝐵 ⊔ 𝐵))) |
34 | 31, 33 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ≼ (𝐵 ⊔ 𝐵) → ω ≼ (𝐵 ⊔ 𝐵))) |
35 | | djuinf 9802 |
. . . . . . . . . . . . 13
⊢ (ω
≼ 𝐵 ↔ ω
≼ (𝐵 ⊔ 𝐵)) |
36 | 35 | biimpri 231 |
. . . . . . . . . . . 12
⊢ (ω
≼ (𝐵 ⊔ 𝐵) → ω ≼ 𝐵) |
37 | | domrefg 8663 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ dom card → 𝐵 ≼ 𝐵) |
38 | | infdjuabs 9820 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ dom card ∧ ω
≼ 𝐵 ∧ 𝐵 ≼ 𝐵) → (𝐵 ⊔ 𝐵) ≈ 𝐵) |
39 | 38 | 3com23 1128 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ dom card ∧ 𝐵 ≼ 𝐵 ∧ ω ≼ 𝐵) → (𝐵 ⊔ 𝐵) ≈ 𝐵) |
40 | 39 | 3expia 1123 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ dom card ∧ 𝐵 ≼ 𝐵) → (ω ≼ 𝐵 → (𝐵 ⊔ 𝐵) ≈ 𝐵)) |
41 | 37, 40 | mpdan 687 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ dom card → (ω
≼ 𝐵 → (𝐵 ⊔ 𝐵) ≈ 𝐵)) |
42 | 8, 36, 41 | syl2im 40 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (ω ≼ (𝐵 ⊔ 𝐵) → (𝐵 ⊔ 𝐵) ≈ 𝐵)) |
43 | 34, 42 | syld 47 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ≼ (𝐵 ⊔ 𝐵) → (𝐵 ⊔ 𝐵) ≈ 𝐵)) |
44 | | domen2 8789 |
. . . . . . . . . . 11
⊢ ((𝐵 ⊔ 𝐵) ≈ 𝐵 → (𝐴 ≼ (𝐵 ⊔ 𝐵) ↔ 𝐴 ≼ 𝐵)) |
45 | 44 | biimpcd 252 |
. . . . . . . . . 10
⊢ (𝐴 ≼ (𝐵 ⊔ 𝐵) → ((𝐵 ⊔ 𝐵) ≈ 𝐵 → 𝐴 ≼ 𝐵)) |
46 | 43, 45 | sylcom 30 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ≼ (𝐵 ⊔ 𝐵) → 𝐴 ≼ 𝐵)) |
47 | 30, 46 | syld 47 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ (𝐵 ⊔ 𝐵) → 𝐴 ≼ 𝐵)) |
48 | | domnsym 8772 |
. . . . . . . 8
⊢ (𝐴 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴) |
49 | 27, 47, 48 | syl56 36 |
. . . . . . 7
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ((𝐴 ∖ 𝐵) ≺ 𝐵 → ¬ 𝐵 ≺ 𝐴)) |
50 | 22, 49 | mt2d 138 |
. . . . . 6
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ¬ (𝐴 ∖ 𝐵) ≺ 𝐵) |
51 | | domtri2 9605 |
. . . . . . 7
⊢ ((𝐵 ∈ dom card ∧ (𝐴 ∖ 𝐵) ∈ dom card) → (𝐵 ≼ (𝐴 ∖ 𝐵) ↔ ¬ (𝐴 ∖ 𝐵) ≺ 𝐵)) |
52 | 8, 16, 51 | syl2anc 587 |
. . . . . 6
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐵 ≼ (𝐴 ∖ 𝐵) ↔ ¬ (𝐴 ∖ 𝐵) ≺ 𝐵)) |
53 | 50, 52 | mpbird 260 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐵 ≼ (𝐴 ∖ 𝐵)) |
54 | 1 | difexd 5222 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ∈ V) |
55 | | djudom2 9797 |
. . . . 5
⊢ ((𝐵 ≼ (𝐴 ∖ 𝐵) ∧ (𝐴 ∖ 𝐵) ∈ V) → ((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) |
56 | 53, 54, 55 | syl2anc 587 |
. . . 4
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) |
57 | | domtr 8681 |
. . . 4
⊢ ((𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ 𝐵) ∧ ((𝐴 ∖ 𝐵) ⊔ 𝐵) ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) → 𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) |
58 | 21, 56, 57 | syl2anc 587 |
. . 3
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) |
59 | | domtr 8681 |
. . . . . 6
⊢ ((ω
≼ 𝐴 ∧ 𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) → ω ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) |
60 | 31, 58, 59 | syl2anc 587 |
. . . . 5
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ω ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) |
61 | | djuinf 9802 |
. . . . 5
⊢ (ω
≼ (𝐴 ∖ 𝐵) ↔ ω ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵))) |
62 | 60, 61 | sylibr 237 |
. . . 4
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ω ≼ (𝐴 ∖ 𝐵)) |
63 | | domrefg 8663 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∈ dom card → (𝐴 ∖ 𝐵) ≼ (𝐴 ∖ 𝐵)) |
64 | 16, 63 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≼ (𝐴 ∖ 𝐵)) |
65 | | infdjuabs 9820 |
. . . 4
⊢ (((𝐴 ∖ 𝐵) ∈ dom card ∧ ω ≼
(𝐴 ∖ 𝐵) ∧ (𝐴 ∖ 𝐵) ≼ (𝐴 ∖ 𝐵)) → ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵)) ≈ (𝐴 ∖ 𝐵)) |
66 | 16, 62, 64, 65 | syl3anc 1373 |
. . 3
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵)) ≈ (𝐴 ∖ 𝐵)) |
67 | | domentr 8687 |
. . 3
⊢ ((𝐴 ≼ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵)) ∧ ((𝐴 ∖ 𝐵) ⊔ (𝐴 ∖ 𝐵)) ≈ (𝐴 ∖ 𝐵)) → 𝐴 ≼ (𝐴 ∖ 𝐵)) |
68 | 58, 66, 67 | syl2anc 587 |
. 2
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≼ (𝐴 ∖ 𝐵)) |
69 | | sbth 8766 |
. 2
⊢ (((𝐴 ∖ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ (𝐴 ∖ 𝐵)) → (𝐴 ∖ 𝐵) ≈ 𝐴) |
70 | 4, 68, 69 | syl2anc 587 |
1
⊢ ((𝐴 ∈ dom card ∧ ω
≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≈ 𝐴) |