MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrmhaus Structured version   Visualization version   GIF version

Theorem nrmhaus 22723
Description: A T1 normal space is Hausdorff. A Hausdorff or T1 normal space is also known as a T4 space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
nrmhaus (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))

Proof of Theorem nrmhaus
StepHypRef Expression
1 haust1 22249 . 2 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
2 nrmreg 22721 . . . 4 ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg)
32ex 416 . . 3 (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Reg))
4 t1t0 22245 . . . 4 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
5 reghaus 22722 . . . 4 (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))
64, 5syl5ibrcom 250 . . 3 (𝐽 ∈ Fre → (𝐽 ∈ Reg → 𝐽 ∈ Haus))
73, 6sylcom 30 . 2 (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Haus))
81, 7impbid2 229 1 (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2110  Kol2ct0 22203  Frect1 22204  Hauscha 22205  Regcreg 22206  Nrmcnrm 22207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-1o 8202  df-map 8510  df-topgen 16948  df-qtop 17012  df-top 21791  df-topon 21808  df-cld 21916  df-cls 21918  df-cn 22124  df-t0 22210  df-t1 22211  df-haus 22212  df-reg 22213  df-nrm 22214  df-kq 22591  df-hmeo 22652  df-hmph 22653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator