Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrmhaus | Structured version Visualization version GIF version |
Description: A T1 normal space is Hausdorff. A Hausdorff or T1 normal space is also known as a T4 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
nrmhaus | ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 22503 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | nrmreg 22975 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) | |
3 | 2 | ex 413 | . . 3 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Reg)) |
4 | t1t0 22499 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
5 | reghaus 22976 | . . . 4 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | |
6 | 4, 5 | syl5ibrcom 246 | . . 3 ⊢ (𝐽 ∈ Fre → (𝐽 ∈ Reg → 𝐽 ∈ Haus)) |
7 | 3, 6 | sylcom 30 | . 2 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
8 | 1, 7 | impbid2 225 | 1 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 Kol2ct0 22457 Frect1 22458 Hauscha 22459 Regcreg 22460 Nrmcnrm 22461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-1o 8297 df-map 8617 df-topgen 17154 df-qtop 17218 df-top 22043 df-topon 22060 df-cld 22170 df-cls 22172 df-cn 22378 df-t0 22464 df-t1 22465 df-haus 22466 df-reg 22467 df-nrm 22468 df-kq 22845 df-hmeo 22906 df-hmph 22907 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |