| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrmhaus | Structured version Visualization version GIF version | ||
| Description: A T1 normal space is Hausdorff. A Hausdorff or T1 normal space is also known as a T4 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| nrmhaus | ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23267 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | nrmreg 23739 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Reg)) |
| 4 | t1t0 23263 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
| 5 | reghaus 23740 | . . . 4 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | |
| 6 | 4, 5 | syl5ibrcom 247 | . . 3 ⊢ (𝐽 ∈ Fre → (𝐽 ∈ Reg → 𝐽 ∈ Haus)) |
| 7 | 3, 6 | sylcom 30 | . 2 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
| 8 | 1, 7 | impbid2 226 | 1 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Kol2ct0 23221 Frect1 23222 Hauscha 23223 Regcreg 23224 Nrmcnrm 23225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-topgen 17347 df-qtop 17411 df-top 22809 df-topon 22826 df-cld 22934 df-cls 22936 df-cn 23142 df-t0 23228 df-t1 23229 df-haus 23230 df-reg 23231 df-nrm 23232 df-kq 23609 df-hmeo 23670 df-hmph 23671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |