![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrmhaus | Structured version Visualization version GIF version |
Description: A T1 normal space is Hausdorff. A Hausdorff or T1 normal space is also known as a T4 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
nrmhaus | ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 23077 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | nrmreg 23549 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Reg)) |
4 | t1t0 23073 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
5 | reghaus 23550 | . . . 4 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | |
6 | 4, 5 | syl5ibrcom 246 | . . 3 ⊢ (𝐽 ∈ Fre → (𝐽 ∈ Reg → 𝐽 ∈ Haus)) |
7 | 3, 6 | sylcom 30 | . 2 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
8 | 1, 7 | impbid2 225 | 1 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 Kol2ct0 23031 Frect1 23032 Hauscha 23033 Regcreg 23034 Nrmcnrm 23035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-1o 8470 df-map 8826 df-topgen 17394 df-qtop 17458 df-top 22617 df-topon 22634 df-cld 22744 df-cls 22746 df-cn 22952 df-t0 23038 df-t1 23039 df-haus 23040 df-reg 23041 df-nrm 23042 df-kq 23419 df-hmeo 23480 df-hmph 23481 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |