| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrmhaus | Structured version Visualization version GIF version | ||
| Description: A T1 normal space is Hausdorff. A Hausdorff or T1 normal space is also known as a T4 space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| nrmhaus | ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haust1 23239 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
| 2 | nrmreg 23711 | . . . 4 ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Reg)) |
| 4 | t1t0 23235 | . . . 4 ⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) | |
| 5 | reghaus 23712 | . . . 4 ⊢ (𝐽 ∈ Reg → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) | |
| 6 | 4, 5 | syl5ibrcom 247 | . . 3 ⊢ (𝐽 ∈ Fre → (𝐽 ∈ Reg → 𝐽 ∈ Haus)) |
| 7 | 3, 6 | sylcom 30 | . 2 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Fre → 𝐽 ∈ Haus)) |
| 8 | 1, 7 | impbid2 226 | 1 ⊢ (𝐽 ∈ Nrm → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Kol2ct0 23193 Frect1 23194 Hauscha 23195 Regcreg 23196 Nrmcnrm 23197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-1o 8434 df-map 8801 df-topgen 17406 df-qtop 17470 df-top 22781 df-topon 22798 df-cld 22906 df-cls 22908 df-cn 23114 df-t0 23200 df-t1 23201 df-haus 23202 df-reg 23203 df-nrm 23204 df-kq 23581 df-hmeo 23642 df-hmph 23643 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |