MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prod1 Structured version   Visualization version   GIF version

Theorem prod1 15582
Description: Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.)
Assertion
Ref Expression
prod1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem prod1
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 simpr 484 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 ax-1ne0 10871 . . . . 5 1 ≠ 0
43a1i 11 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 1 ≠ 0)
51prodfclim1 15533 . . . . 5 (𝑀 ∈ ℤ → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
65adantl 481 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( · , ((ℤ𝑀) × {1})) ⇝ 1)
7 simpl 482 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
8 1ex 10902 . . . . . . 7 1 ∈ V
98fvconst2 7061 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = 1)
10 ifid 4496 . . . . . 6 if(𝑘𝐴, 1, 1) = 1
119, 10eqtr4di 2797 . . . . 5 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
1211adantl 481 . . . 4 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {1})‘𝑘) = if(𝑘𝐴, 1, 1))
13 1cnd 10901 . . . 4 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 1 ∈ ℂ)
141, 2, 4, 6, 7, 12, 13zprodn0 15577 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ∏𝑘𝐴 1 = 1)
15 uzf 12514 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
1615fdmi 6596 . . . . . . . 8 dom ℤ = ℤ
1716eleq2i 2830 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
18 ndmfv 6786 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
1917, 18sylnbir 330 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2019sseq2d 3949 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2120biimpac 478 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
22 ss0 4329 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
23 prodeq1 15547 . . . . 5 (𝐴 = ∅ → ∏𝑘𝐴 1 = ∏𝑘 ∈ ∅ 1)
24 prod0 15581 . . . . 5 𝑘 ∈ ∅ 1 = 1
2523, 24eqtrdi 2795 . . . 4 (𝐴 = ∅ → ∏𝑘𝐴 1 = 1)
2621, 22, 253syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → ∏𝑘𝐴 1 = 1)
2714, 26pm2.61dan 809 . 2 (𝐴 ⊆ (ℤ𝑀) → ∏𝑘𝐴 1 = 1)
28 fz1f1o 15350 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
29 eqidd 2739 . . . . . . . . 9 (𝑘 = (𝑓𝑗) → 1 = 1)
30 simpl 482 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
31 simpr 484 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
32 1cnd 10901 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 1 ∈ ℂ)
33 elfznn 13214 . . . . . . . . . . 11 (𝑗 ∈ (1...(♯‘𝐴)) → 𝑗 ∈ ℕ)
348fvconst2 7061 . . . . . . . . . . 11 (𝑗 ∈ ℕ → ((ℕ × {1})‘𝑗) = 1)
3533, 34syl 17 . . . . . . . . . 10 (𝑗 ∈ (1...(♯‘𝐴)) → ((ℕ × {1})‘𝑗) = 1)
3635adantl 481 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ × {1})‘𝑗) = 1)
3729, 30, 31, 32, 36fprod 15579 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = (seq1( · , (ℕ × {1}))‘(♯‘𝐴)))
38 nnuz 12550 . . . . . . . . . 10 ℕ = (ℤ‘1)
3938prodf1 15531 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
4039adantr 480 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( · , (ℕ × {1}))‘(♯‘𝐴)) = 1)
4137, 40eqtrd 2778 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
4241ex 412 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
4342exlimdv 1937 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → ∏𝑘𝐴 1 = 1))
4443imp 406 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → ∏𝑘𝐴 1 = 1)
4525, 44jaoi 853 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → ∏𝑘𝐴 1 = 1)
4628, 45syl 17 . 2 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
4727, 46jaoi 853 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  wne 2942  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  {csn 4558   class class class wbr 5070   × cxp 5578  dom cdm 5580  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   · cmul 10807  cn 11903  cz 12249  cuz 12511  ...cfz 13168  seqcseq 13649  chash 13972  cli 15121  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  fprodex01  31041  etransclem35  43700
  Copyright terms: Public domain W3C validator