| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . 4
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 2 | | simpr 484 |
. . . 4
⊢ ((𝐴 ⊆
(ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) |
| 3 | | ax-1ne0 11203 |
. . . . 5
⊢ 1 ≠
0 |
| 4 | 3 | a1i 11 |
. . . 4
⊢ ((𝐴 ⊆
(ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → 1 ≠
0) |
| 5 | 1 | prodfclim1 15914 |
. . . . 5
⊢ (𝑀 ∈ ℤ → seq𝑀( · ,
((ℤ≥‘𝑀) × {1})) ⇝ 1) |
| 6 | 5 | adantl 481 |
. . . 4
⊢ ((𝐴 ⊆
(ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( · ,
((ℤ≥‘𝑀) × {1})) ⇝ 1) |
| 7 | | simpl 482 |
. . . 4
⊢ ((𝐴 ⊆
(ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 8 | | 1ex 11236 |
. . . . . . 7
⊢ 1 ∈
V |
| 9 | 8 | fvconst2 7201 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝑀) →
(((ℤ≥‘𝑀) × {1})‘𝑘) = 1) |
| 10 | | ifid 4546 |
. . . . . 6
⊢ if(𝑘 ∈ 𝐴, 1, 1) = 1 |
| 11 | 9, 10 | eqtr4di 2789 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝑀) →
(((ℤ≥‘𝑀) × {1})‘𝑘) = if(𝑘 ∈ 𝐴, 1, 1)) |
| 12 | 11 | adantl 481 |
. . . 4
⊢ (((𝐴 ⊆
(ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) →
(((ℤ≥‘𝑀) × {1})‘𝑘) = if(𝑘 ∈ 𝐴, 1, 1)) |
| 13 | | 1cnd 11235 |
. . . 4
⊢ (((𝐴 ⊆
(ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℂ) |
| 14 | 1, 2, 4, 6, 7, 12,
13 | zprodn0 15960 |
. . 3
⊢ ((𝐴 ⊆
(ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → ∏𝑘 ∈ 𝐴 1 = 1) |
| 15 | | uzf 12860 |
. . . . . . . . 9
⊢
ℤ≥:ℤ⟶𝒫 ℤ |
| 16 | 15 | fdmi 6722 |
. . . . . . . 8
⊢ dom
ℤ≥ = ℤ |
| 17 | 16 | eleq2i 2827 |
. . . . . . 7
⊢ (𝑀 ∈ dom
ℤ≥ ↔ 𝑀 ∈ ℤ) |
| 18 | | ndmfv 6916 |
. . . . . . 7
⊢ (¬
𝑀 ∈ dom
ℤ≥ → (ℤ≥‘𝑀) = ∅) |
| 19 | 17, 18 | sylnbir 331 |
. . . . . 6
⊢ (¬
𝑀 ∈ ℤ →
(ℤ≥‘𝑀) = ∅) |
| 20 | 19 | sseq2d 3996 |
. . . . 5
⊢ (¬
𝑀 ∈ ℤ →
(𝐴 ⊆
(ℤ≥‘𝑀) ↔ 𝐴 ⊆ ∅)) |
| 21 | 20 | biimpac 478 |
. . . 4
⊢ ((𝐴 ⊆
(ℤ≥‘𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅) |
| 22 | | ss0 4382 |
. . . 4
⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) |
| 23 | | prodeq1 15928 |
. . . . 5
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 1 = ∏𝑘 ∈ ∅ 1) |
| 24 | | prod0 15964 |
. . . . 5
⊢
∏𝑘 ∈
∅ 1 = 1 |
| 25 | 23, 24 | eqtrdi 2787 |
. . . 4
⊢ (𝐴 = ∅ → ∏𝑘 ∈ 𝐴 1 = 1) |
| 26 | 21, 22, 25 | 3syl 18 |
. . 3
⊢ ((𝐴 ⊆
(ℤ≥‘𝑀) ∧ ¬ 𝑀 ∈ ℤ) → ∏𝑘 ∈ 𝐴 1 = 1) |
| 27 | 14, 26 | pm2.61dan 812 |
. 2
⊢ (𝐴 ⊆
(ℤ≥‘𝑀) → ∏𝑘 ∈ 𝐴 1 = 1) |
| 28 | | fz1f1o 15731 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) |
| 29 | | eqidd 2737 |
. . . . . . . . 9
⊢ (𝑘 = (𝑓‘𝑗) → 1 = 1) |
| 30 | | simpl 482 |
. . . . . . . . 9
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (♯‘𝐴) ∈
ℕ) |
| 31 | | simpr 484 |
. . . . . . . . 9
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) |
| 32 | | 1cnd 11235 |
. . . . . . . . 9
⊢
((((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℂ) |
| 33 | | elfznn 13575 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(1...(♯‘𝐴))
→ 𝑗 ∈
ℕ) |
| 34 | 8 | fvconst2 7201 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → ((ℕ
× {1})‘𝑗) =
1) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(1...(♯‘𝐴))
→ ((ℕ × {1})‘𝑗) = 1) |
| 36 | 35 | adantl 481 |
. . . . . . . . 9
⊢
((((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ 𝑗 ∈ (1...(♯‘𝐴))) → ((ℕ ×
{1})‘𝑗) =
1) |
| 37 | 29, 30, 31, 32, 36 | fprod 15962 |
. . . . . . . 8
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 1 = (seq1( · , (ℕ ×
{1}))‘(♯‘𝐴))) |
| 38 | | nnuz 12900 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
| 39 | 38 | prodf1 15912 |
. . . . . . . . 9
⊢
((♯‘𝐴)
∈ ℕ → (seq1( · , (ℕ ×
{1}))‘(♯‘𝐴)) = 1) |
| 40 | 39 | adantr 480 |
. . . . . . . 8
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (seq1( · ,
(ℕ × {1}))‘(♯‘𝐴)) = 1) |
| 41 | 37, 40 | eqtrd 2771 |
. . . . . . 7
⊢
(((♯‘𝐴)
∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 1 = 1) |
| 42 | 41 | ex 412 |
. . . . . 6
⊢
((♯‘𝐴)
∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 1 = 1)) |
| 43 | 42 | exlimdv 1933 |
. . . . 5
⊢
((♯‘𝐴)
∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → ∏𝑘 ∈ 𝐴 1 = 1)) |
| 44 | 43 | imp 406 |
. . . 4
⊢
(((♯‘𝐴)
∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → ∏𝑘 ∈ 𝐴 1 = 1) |
| 45 | 25, 44 | jaoi 857 |
. . 3
⊢ ((𝐴 = ∅ ∨
((♯‘𝐴) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → ∏𝑘 ∈ 𝐴 1 = 1) |
| 46 | 28, 45 | syl 17 |
. 2
⊢ (𝐴 ∈ Fin → ∏𝑘 ∈ 𝐴 1 = 1) |
| 47 | 27, 46 | jaoi 857 |
1
⊢ ((𝐴 ⊆
(ℤ≥‘𝑀) ∨ 𝐴 ∈ Fin) → ∏𝑘 ∈ 𝐴 1 = 1) |