Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfle | Structured version Visualization version GIF version |
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfle | ⊢ (cf‘𝐴) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cflecard 10009 | . . 3 ⊢ (cf‘𝐴) ⊆ (card‘𝐴) | |
2 | cardonle 9715 | . . 3 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
3 | 1, 2 | sstrid 3932 | . 2 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
4 | cff 10004 | . . . . . 6 ⊢ cf:On⟶On | |
5 | 4 | fdmi 6612 | . . . . 5 ⊢ dom cf = On |
6 | 5 | eleq2i 2830 | . . . 4 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
7 | ndmfv 6804 | . . . 4 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
8 | 6, 7 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
9 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
10 | 8, 9 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ (cf‘𝐴) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 dom cdm 5589 Oncon0 6266 ‘cfv 6433 cardccrd 9693 cfccf 9695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-en 8734 df-card 9697 df-cf 9699 |
This theorem is referenced by: cfom 10020 cfidm 10031 alephreg 10338 winafp 10453 tskcard 10537 gruina 10574 |
Copyright terms: Public domain | W3C validator |