Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfle | Structured version Visualization version GIF version |
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfle | ⊢ (cf‘𝐴) ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cflecard 10102 | . . 3 ⊢ (cf‘𝐴) ⊆ (card‘𝐴) | |
2 | cardonle 9806 | . . 3 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
3 | 1, 2 | sstrid 3942 | . 2 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
4 | cff 10097 | . . . . . 6 ⊢ cf:On⟶On | |
5 | 4 | fdmi 6657 | . . . . 5 ⊢ dom cf = On |
6 | 5 | eleq2i 2828 | . . . 4 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
7 | ndmfv 6854 | . . . 4 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
8 | 6, 7 | sylnbir 330 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
9 | 0ss 4342 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
10 | 8, 9 | eqsstrdi 3985 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ (cf‘𝐴) ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 ∅c0 4268 dom cdm 5614 Oncon0 6296 ‘cfv 6473 cardccrd 9784 cfccf 9786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6299 df-on 6300 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-en 8797 df-card 9788 df-cf 9790 |
This theorem is referenced by: cfom 10113 cfidm 10124 alephreg 10431 winafp 10546 tskcard 10630 gruina 10667 |
Copyright terms: Public domain | W3C validator |