MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfle Structured version   Visualization version   GIF version

Theorem cfle 10273
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfle (cf‘𝐴) ⊆ 𝐴

Proof of Theorem cfle
StepHypRef Expression
1 cflecard 10272 . . 3 (cf‘𝐴) ⊆ (card‘𝐴)
2 cardonle 9976 . . 3 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
31, 2sstrid 3975 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
4 cff 10267 . . . . . 6 cf:On⟶On
54fdmi 6722 . . . . 5 dom cf = On
65eleq2i 2827 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
7 ndmfv 6916 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
86, 7sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
9 0ss 4380 . . 3 ∅ ⊆ 𝐴
108, 9eqsstrdi 4008 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
113, 10pm2.61i 182 1 (cf‘𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  wss 3931  c0 4313  dom cdm 5659  Oncon0 6357  cfv 6536  cardccrd 9954  cfccf 9956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-en 8965  df-card 9958  df-cf 9960
This theorem is referenced by:  cfom  10283  cfidm  10294  alephreg  10601  winafp  10716  tskcard  10800  gruina  10837
  Copyright terms: Public domain W3C validator