MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfle Structured version   Visualization version   GIF version

Theorem cfle 10295
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfle (cf‘𝐴) ⊆ 𝐴

Proof of Theorem cfle
StepHypRef Expression
1 cflecard 10294 . . 3 (cf‘𝐴) ⊆ (card‘𝐴)
2 cardonle 9998 . . 3 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
31, 2sstrid 3994 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
4 cff 10289 . . . . . 6 cf:On⟶On
54fdmi 6746 . . . . 5 dom cf = On
65eleq2i 2832 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
7 ndmfv 6940 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
86, 7sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
9 0ss 4399 . . 3 ∅ ⊆ 𝐴
108, 9eqsstrdi 4027 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
113, 10pm2.61i 182 1 (cf‘𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  wss 3950  c0 4332  dom cdm 5684  Oncon0 6383  cfv 6560  cardccrd 9976  cfccf 9978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-ord 6386  df-on 6387  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-en 8987  df-card 9980  df-cf 9982
This theorem is referenced by:  cfom  10305  cfidm  10316  alephreg  10623  winafp  10738  tskcard  10822  gruina  10859
  Copyright terms: Public domain W3C validator