MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfle Structured version   Visualization version   GIF version

Theorem cfle 10103
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfle (cf‘𝐴) ⊆ 𝐴

Proof of Theorem cfle
StepHypRef Expression
1 cflecard 10102 . . 3 (cf‘𝐴) ⊆ (card‘𝐴)
2 cardonle 9806 . . 3 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
31, 2sstrid 3942 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
4 cff 10097 . . . . . 6 cf:On⟶On
54fdmi 6657 . . . . 5 dom cf = On
65eleq2i 2828 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
7 ndmfv 6854 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
86, 7sylnbir 330 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
9 0ss 4342 . . 3 ∅ ⊆ 𝐴
108, 9eqsstrdi 3985 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
113, 10pm2.61i 182 1 (cf‘𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2105  wss 3897  c0 4268  dom cdm 5614  Oncon0 6296  cfv 6473  cardccrd 9784  cfccf 9786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6299  df-on 6300  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-en 8797  df-card 9788  df-cf 9790
This theorem is referenced by:  cfom  10113  cfidm  10124  alephreg  10431  winafp  10546  tskcard  10630  gruina  10667
  Copyright terms: Public domain W3C validator