| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfle | Structured version Visualization version GIF version | ||
| Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cfle | ⊢ (cf‘𝐴) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cflecard 10151 | . . 3 ⊢ (cf‘𝐴) ⊆ (card‘𝐴) | |
| 2 | cardonle 9857 | . . 3 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
| 3 | 1, 2 | sstrid 3942 | . 2 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
| 4 | cff 10146 | . . . . . 6 ⊢ cf:On⟶On | |
| 5 | 4 | fdmi 6667 | . . . . 5 ⊢ dom cf = On |
| 6 | 5 | eleq2i 2825 | . . . 4 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
| 7 | ndmfv 6860 | . . . 4 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
| 8 | 6, 7 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
| 9 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 10 | 8, 9 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
| 11 | 3, 10 | pm2.61i 182 | 1 ⊢ (cf‘𝐴) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 dom cdm 5619 Oncon0 6311 ‘cfv 6486 cardccrd 9835 cfccf 9837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-en 8876 df-card 9839 df-cf 9841 |
| This theorem is referenced by: cfom 10162 cfidm 10173 alephreg 10480 winafp 10595 tskcard 10679 gruina 10716 |
| Copyright terms: Public domain | W3C validator |