MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfle Structured version   Visualization version   GIF version

Theorem cfle 10152
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfle (cf‘𝐴) ⊆ 𝐴

Proof of Theorem cfle
StepHypRef Expression
1 cflecard 10151 . . 3 (cf‘𝐴) ⊆ (card‘𝐴)
2 cardonle 9857 . . 3 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
31, 2sstrid 3942 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
4 cff 10146 . . . . . 6 cf:On⟶On
54fdmi 6667 . . . . 5 dom cf = On
65eleq2i 2825 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
7 ndmfv 6860 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
86, 7sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
9 0ss 4349 . . 3 ∅ ⊆ 𝐴
108, 9eqsstrdi 3975 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
113, 10pm2.61i 182 1 (cf‘𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  wss 3898  c0 4282  dom cdm 5619  Oncon0 6311  cfv 6486  cardccrd 9835  cfccf 9837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-en 8876  df-card 9839  df-cf 9841
This theorem is referenced by:  cfom  10162  cfidm  10173  alephreg  10480  winafp  10595  tskcard  10679  gruina  10716
  Copyright terms: Public domain W3C validator