![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfle | Structured version Visualization version GIF version |
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfle | β’ (cfβπ΄) β π΄ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cflecard 10247 | . . 3 β’ (cfβπ΄) β (cardβπ΄) | |
2 | cardonle 9951 | . . 3 β’ (π΄ β On β (cardβπ΄) β π΄) | |
3 | 1, 2 | sstrid 3993 | . 2 β’ (π΄ β On β (cfβπ΄) β π΄) |
4 | cff 10242 | . . . . . 6 β’ cf:OnβΆOn | |
5 | 4 | fdmi 6729 | . . . . 5 β’ dom cf = On |
6 | 5 | eleq2i 2825 | . . . 4 β’ (π΄ β dom cf β π΄ β On) |
7 | ndmfv 6926 | . . . 4 β’ (Β¬ π΄ β dom cf β (cfβπ΄) = β ) | |
8 | 6, 7 | sylnbir 330 | . . 3 β’ (Β¬ π΄ β On β (cfβπ΄) = β ) |
9 | 0ss 4396 | . . 3 β’ β β π΄ | |
10 | 8, 9 | eqsstrdi 4036 | . 2 β’ (Β¬ π΄ β On β (cfβπ΄) β π΄) |
11 | 3, 10 | pm2.61i 182 | 1 β’ (cfβπ΄) β π΄ |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1541 β wcel 2106 β wss 3948 β c0 4322 dom cdm 5676 Oncon0 6364 βcfv 6543 cardccrd 9929 cfccf 9931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-en 8939 df-card 9933 df-cf 9935 |
This theorem is referenced by: cfom 10258 cfidm 10269 alephreg 10576 winafp 10691 tskcard 10775 gruina 10812 |
Copyright terms: Public domain | W3C validator |