| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfle | Structured version Visualization version GIF version | ||
| Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cfle | ⊢ (cf‘𝐴) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cflecard 10272 | . . 3 ⊢ (cf‘𝐴) ⊆ (card‘𝐴) | |
| 2 | cardonle 9976 | . . 3 ⊢ (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴) | |
| 3 | 1, 2 | sstrid 3975 | . 2 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
| 4 | cff 10267 | . . . . . 6 ⊢ cf:On⟶On | |
| 5 | 4 | fdmi 6722 | . . . . 5 ⊢ dom cf = On |
| 6 | 5 | eleq2i 2827 | . . . 4 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
| 7 | ndmfv 6916 | . . . 4 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
| 8 | 6, 7 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
| 9 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ 𝐴 | |
| 10 | 8, 9 | eqsstrdi 4008 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴) |
| 11 | 3, 10 | pm2.61i 182 | 1 ⊢ (cf‘𝐴) ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∅c0 4313 dom cdm 5659 Oncon0 6357 ‘cfv 6536 cardccrd 9954 cfccf 9956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-en 8965 df-card 9958 df-cf 9960 |
| This theorem is referenced by: cfom 10283 cfidm 10294 alephreg 10601 winafp 10716 tskcard 10800 gruina 10837 |
| Copyright terms: Public domain | W3C validator |