MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfle Structured version   Visualization version   GIF version

Theorem cfle 10276
Description: Cofinality is bounded by its argument. Exercise 1 of [TakeutiZaring] p. 102. (Contributed by NM, 26-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfle (cf‘𝐴) ⊆ 𝐴

Proof of Theorem cfle
StepHypRef Expression
1 cflecard 10275 . . 3 (cf‘𝐴) ⊆ (card‘𝐴)
2 cardonle 9979 . . 3 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
31, 2sstrid 3975 . 2 (𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
4 cff 10270 . . . . . 6 cf:On⟶On
54fdmi 6727 . . . . 5 dom cf = On
65eleq2i 2825 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
7 ndmfv 6921 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
86, 7sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
9 0ss 4380 . . 3 ∅ ⊆ 𝐴
108, 9eqsstrdi 4008 . 2 𝐴 ∈ On → (cf‘𝐴) ⊆ 𝐴)
113, 10pm2.61i 182 1 (cf‘𝐴) ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  wss 3931  c0 4313  dom cdm 5665  Oncon0 6363  cfv 6541  cardccrd 9957  cfccf 9959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-en 8968  df-card 9961  df-cf 9963
This theorem is referenced by:  cfom  10286  cfidm  10297  alephreg  10604  winafp  10719  tskcard  10803  gruina  10840
  Copyright terms: Public domain W3C validator