MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephnbtwn Structured version   Visualization version   GIF version

Theorem alephnbtwn 10031
Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephnbtwn ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))

Proof of Theorem alephnbtwn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 alephon 10029 . . . . . . . 8 (ℵ‘𝐴) ∈ On
2 id 22 . . . . . . . . . 10 ((card‘𝐵) = 𝐵 → (card‘𝐵) = 𝐵)
3 cardon 9904 . . . . . . . . . 10 (card‘𝐵) ∈ On
42, 3eqeltrrdi 2838 . . . . . . . . 9 ((card‘𝐵) = 𝐵𝐵 ∈ On)
5 onenon 9909 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ∈ dom card)
64, 5syl 17 . . . . . . . 8 ((card‘𝐵) = 𝐵𝐵 ∈ dom card)
7 cardsdomel 9934 . . . . . . . 8 (((ℵ‘𝐴) ∈ On ∧ 𝐵 ∈ dom card) → ((ℵ‘𝐴) ≺ 𝐵 ↔ (ℵ‘𝐴) ∈ (card‘𝐵)))
81, 6, 7sylancr 587 . . . . . . 7 ((card‘𝐵) = 𝐵 → ((ℵ‘𝐴) ≺ 𝐵 ↔ (ℵ‘𝐴) ∈ (card‘𝐵)))
9 eleq2 2818 . . . . . . 7 ((card‘𝐵) = 𝐵 → ((ℵ‘𝐴) ∈ (card‘𝐵) ↔ (ℵ‘𝐴) ∈ 𝐵))
108, 9bitrd 279 . . . . . 6 ((card‘𝐵) = 𝐵 → ((ℵ‘𝐴) ≺ 𝐵 ↔ (ℵ‘𝐴) ∈ 𝐵))
1110adantl 481 . . . . 5 ((𝐴 ∈ On ∧ (card‘𝐵) = 𝐵) → ((ℵ‘𝐴) ≺ 𝐵 ↔ (ℵ‘𝐴) ∈ 𝐵))
12 alephsuc 10028 . . . . . . . . . . 11 (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))
13 onenon 9909 . . . . . . . . . . . 12 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
14 harval2 9957 . . . . . . . . . . . 12 ((ℵ‘𝐴) ∈ dom card → (har‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥})
151, 13, 14mp2b 10 . . . . . . . . . . 11 (har‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥}
1612, 15eqtrdi 2781 . . . . . . . . . 10 (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥})
1716eleq2d 2815 . . . . . . . . 9 (𝐴 ∈ On → (𝐵 ∈ (ℵ‘suc 𝐴) ↔ 𝐵 {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥}))
1817biimpd 229 . . . . . . . 8 (𝐴 ∈ On → (𝐵 ∈ (ℵ‘suc 𝐴) → 𝐵 {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥}))
19 breq2 5114 . . . . . . . . 9 (𝑥 = 𝐵 → ((ℵ‘𝐴) ≺ 𝑥 ↔ (ℵ‘𝐴) ≺ 𝐵))
2019onnminsb 7778 . . . . . . . 8 (𝐵 ∈ On → (𝐵 {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥} → ¬ (ℵ‘𝐴) ≺ 𝐵))
2118, 20sylan9 507 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ (ℵ‘suc 𝐴) → ¬ (ℵ‘𝐴) ≺ 𝐵))
2221con2d 134 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≺ 𝐵 → ¬ 𝐵 ∈ (ℵ‘suc 𝐴)))
234, 22sylan2 593 . . . . 5 ((𝐴 ∈ On ∧ (card‘𝐵) = 𝐵) → ((ℵ‘𝐴) ≺ 𝐵 → ¬ 𝐵 ∈ (ℵ‘suc 𝐴)))
2411, 23sylbird 260 . . . 4 ((𝐴 ∈ On ∧ (card‘𝐵) = 𝐵) → ((ℵ‘𝐴) ∈ 𝐵 → ¬ 𝐵 ∈ (ℵ‘suc 𝐴)))
25 imnan 399 . . . 4 (((ℵ‘𝐴) ∈ 𝐵 → ¬ 𝐵 ∈ (ℵ‘suc 𝐴)) ↔ ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))
2624, 25sylib 218 . . 3 ((𝐴 ∈ On ∧ (card‘𝐵) = 𝐵) → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))
2726ex 412 . 2 (𝐴 ∈ On → ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴))))
28 n0i 4306 . . . . . . 7 (𝐵 ∈ (ℵ‘suc 𝐴) → ¬ (ℵ‘suc 𝐴) = ∅)
29 alephfnon 10025 . . . . . . . . . 10 ℵ Fn On
3029fndmi 6625 . . . . . . . . 9 dom ℵ = On
3130eleq2i 2821 . . . . . . . 8 (suc 𝐴 ∈ dom ℵ ↔ suc 𝐴 ∈ On)
32 ndmfv 6896 . . . . . . . 8 (¬ suc 𝐴 ∈ dom ℵ → (ℵ‘suc 𝐴) = ∅)
3331, 32sylnbir 331 . . . . . . 7 (¬ suc 𝐴 ∈ On → (ℵ‘suc 𝐴) = ∅)
3428, 33nsyl2 141 . . . . . 6 (𝐵 ∈ (ℵ‘suc 𝐴) → suc 𝐴 ∈ On)
35 onsucb 7795 . . . . . 6 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
3634, 35sylibr 234 . . . . 5 (𝐵 ∈ (ℵ‘suc 𝐴) → 𝐴 ∈ On)
3736adantl 481 . . . 4 (((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)) → 𝐴 ∈ On)
3837con3i 154 . . 3 𝐴 ∈ On → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))
3938a1d 25 . 2 𝐴 ∈ On → ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴))))
4027, 39pm2.61i 182 1 ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  c0 4299   cint 4913   class class class wbr 5110  dom cdm 5641  Oncon0 6335  suc csuc 6337  cfv 6514  csdm 8920  harchar 9516  cardccrd 9895  cale 9896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-oi 9470  df-har 9517  df-card 9899  df-aleph 9900
This theorem is referenced by:  alephnbtwn2  10032
  Copyright terms: Public domain W3C validator