MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephnbtwn Structured version   Visualization version   GIF version

Theorem alephnbtwn 10140
Description: No cardinal can be sandwiched between an aleph and its successor aleph. Theorem 67 of [Suppes] p. 229. (Contributed by NM, 10-Nov-2003.) (Revised by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
alephnbtwn ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))

Proof of Theorem alephnbtwn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 alephon 10138 . . . . . . . 8 (ℵ‘𝐴) ∈ On
2 id 22 . . . . . . . . . 10 ((card‘𝐵) = 𝐵 → (card‘𝐵) = 𝐵)
3 cardon 10013 . . . . . . . . . 10 (card‘𝐵) ∈ On
42, 3eqeltrrdi 2853 . . . . . . . . 9 ((card‘𝐵) = 𝐵𝐵 ∈ On)
5 onenon 10018 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ∈ dom card)
64, 5syl 17 . . . . . . . 8 ((card‘𝐵) = 𝐵𝐵 ∈ dom card)
7 cardsdomel 10043 . . . . . . . 8 (((ℵ‘𝐴) ∈ On ∧ 𝐵 ∈ dom card) → ((ℵ‘𝐴) ≺ 𝐵 ↔ (ℵ‘𝐴) ∈ (card‘𝐵)))
81, 6, 7sylancr 586 . . . . . . 7 ((card‘𝐵) = 𝐵 → ((ℵ‘𝐴) ≺ 𝐵 ↔ (ℵ‘𝐴) ∈ (card‘𝐵)))
9 eleq2 2833 . . . . . . 7 ((card‘𝐵) = 𝐵 → ((ℵ‘𝐴) ∈ (card‘𝐵) ↔ (ℵ‘𝐴) ∈ 𝐵))
108, 9bitrd 279 . . . . . 6 ((card‘𝐵) = 𝐵 → ((ℵ‘𝐴) ≺ 𝐵 ↔ (ℵ‘𝐴) ∈ 𝐵))
1110adantl 481 . . . . 5 ((𝐴 ∈ On ∧ (card‘𝐵) = 𝐵) → ((ℵ‘𝐴) ≺ 𝐵 ↔ (ℵ‘𝐴) ∈ 𝐵))
12 alephsuc 10137 . . . . . . . . . . 11 (𝐴 ∈ On → (ℵ‘suc 𝐴) = (har‘(ℵ‘𝐴)))
13 onenon 10018 . . . . . . . . . . . 12 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
14 harval2 10066 . . . . . . . . . . . 12 ((ℵ‘𝐴) ∈ dom card → (har‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥})
151, 13, 14mp2b 10 . . . . . . . . . . 11 (har‘(ℵ‘𝐴)) = {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥}
1612, 15eqtrdi 2796 . . . . . . . . . 10 (𝐴 ∈ On → (ℵ‘suc 𝐴) = {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥})
1716eleq2d 2830 . . . . . . . . 9 (𝐴 ∈ On → (𝐵 ∈ (ℵ‘suc 𝐴) ↔ 𝐵 {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥}))
1817biimpd 229 . . . . . . . 8 (𝐴 ∈ On → (𝐵 ∈ (ℵ‘suc 𝐴) → 𝐵 {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥}))
19 breq2 5170 . . . . . . . . 9 (𝑥 = 𝐵 → ((ℵ‘𝐴) ≺ 𝑥 ↔ (ℵ‘𝐴) ≺ 𝐵))
2019onnminsb 7835 . . . . . . . 8 (𝐵 ∈ On → (𝐵 {𝑥 ∈ On ∣ (ℵ‘𝐴) ≺ 𝑥} → ¬ (ℵ‘𝐴) ≺ 𝐵))
2118, 20sylan9 507 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ (ℵ‘suc 𝐴) → ¬ (ℵ‘𝐴) ≺ 𝐵))
2221con2d 134 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ℵ‘𝐴) ≺ 𝐵 → ¬ 𝐵 ∈ (ℵ‘suc 𝐴)))
234, 22sylan2 592 . . . . 5 ((𝐴 ∈ On ∧ (card‘𝐵) = 𝐵) → ((ℵ‘𝐴) ≺ 𝐵 → ¬ 𝐵 ∈ (ℵ‘suc 𝐴)))
2411, 23sylbird 260 . . . 4 ((𝐴 ∈ On ∧ (card‘𝐵) = 𝐵) → ((ℵ‘𝐴) ∈ 𝐵 → ¬ 𝐵 ∈ (ℵ‘suc 𝐴)))
25 imnan 399 . . . 4 (((ℵ‘𝐴) ∈ 𝐵 → ¬ 𝐵 ∈ (ℵ‘suc 𝐴)) ↔ ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))
2624, 25sylib 218 . . 3 ((𝐴 ∈ On ∧ (card‘𝐵) = 𝐵) → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))
2726ex 412 . 2 (𝐴 ∈ On → ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴))))
28 n0i 4363 . . . . . . 7 (𝐵 ∈ (ℵ‘suc 𝐴) → ¬ (ℵ‘suc 𝐴) = ∅)
29 alephfnon 10134 . . . . . . . . . 10 ℵ Fn On
3029fndmi 6683 . . . . . . . . 9 dom ℵ = On
3130eleq2i 2836 . . . . . . . 8 (suc 𝐴 ∈ dom ℵ ↔ suc 𝐴 ∈ On)
32 ndmfv 6955 . . . . . . . 8 (¬ suc 𝐴 ∈ dom ℵ → (ℵ‘suc 𝐴) = ∅)
3331, 32sylnbir 331 . . . . . . 7 (¬ suc 𝐴 ∈ On → (ℵ‘suc 𝐴) = ∅)
3428, 33nsyl2 141 . . . . . 6 (𝐵 ∈ (ℵ‘suc 𝐴) → suc 𝐴 ∈ On)
35 onsucb 7853 . . . . . 6 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
3634, 35sylibr 234 . . . . 5 (𝐵 ∈ (ℵ‘suc 𝐴) → 𝐴 ∈ On)
3736adantl 481 . . . 4 (((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)) → 𝐴 ∈ On)
3837con3i 154 . . 3 𝐴 ∈ On → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))
3938a1d 25 . 2 𝐴 ∈ On → ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴))))
4027, 39pm2.61i 182 1 ((card‘𝐵) = 𝐵 → ¬ ((ℵ‘𝐴) ∈ 𝐵𝐵 ∈ (ℵ‘suc 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  c0 4352   cint 4970   class class class wbr 5166  dom cdm 5700  Oncon0 6395  suc csuc 6397  cfv 6573  csdm 9002  harchar 9625  cardccrd 10004  cale 10005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-oi 9579  df-har 9626  df-card 10008  df-aleph 10009
This theorem is referenced by:  alephnbtwn2  10141
  Copyright terms: Public domain W3C validator