MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardcf Structured version   Visualization version   GIF version

Theorem cardcf 10249
Description: Cofinality is a cardinal number. Proposition 11.11 of [TakeutiZaring] p. 103. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cardcf (cardβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄)

Proof of Theorem cardcf
Dummy variables π‘₯ 𝑦 𝑧 𝑀 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10244 . . . 4 (𝐴 ∈ On β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
2 vex 3476 . . . . . . . . 9 𝑣 ∈ V
3 eqeq1 2734 . . . . . . . . . . 11 (π‘₯ = 𝑣 β†’ (π‘₯ = (cardβ€˜π‘¦) ↔ 𝑣 = (cardβ€˜π‘¦)))
43anbi1d 628 . . . . . . . . . 10 (π‘₯ = 𝑣 β†’ ((π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)) ↔ (𝑣 = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))))
54exbidv 1922 . . . . . . . . 9 (π‘₯ = 𝑣 β†’ (βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)) ↔ βˆƒπ‘¦(𝑣 = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))))
62, 5elab 3667 . . . . . . . 8 (𝑣 ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} ↔ βˆƒπ‘¦(𝑣 = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)))
7 fveq2 6890 . . . . . . . . . . . 12 (𝑣 = (cardβ€˜π‘¦) β†’ (cardβ€˜π‘£) = (cardβ€˜(cardβ€˜π‘¦)))
8 cardidm 9956 . . . . . . . . . . . 12 (cardβ€˜(cardβ€˜π‘¦)) = (cardβ€˜π‘¦)
97, 8eqtrdi 2786 . . . . . . . . . . 11 (𝑣 = (cardβ€˜π‘¦) β†’ (cardβ€˜π‘£) = (cardβ€˜π‘¦))
10 eqeq2 2742 . . . . . . . . . . 11 (𝑣 = (cardβ€˜π‘¦) β†’ ((cardβ€˜π‘£) = 𝑣 ↔ (cardβ€˜π‘£) = (cardβ€˜π‘¦)))
119, 10mpbird 256 . . . . . . . . . 10 (𝑣 = (cardβ€˜π‘¦) β†’ (cardβ€˜π‘£) = 𝑣)
1211adantr 479 . . . . . . . . 9 ((𝑣 = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)) β†’ (cardβ€˜π‘£) = 𝑣)
1312exlimiv 1931 . . . . . . . 8 (βˆƒπ‘¦(𝑣 = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)) β†’ (cardβ€˜π‘£) = 𝑣)
146, 13sylbi 216 . . . . . . 7 (𝑣 ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} β†’ (cardβ€˜π‘£) = 𝑣)
15 cardon 9941 . . . . . . 7 (cardβ€˜π‘£) ∈ On
1614, 15eqeltrrdi 2840 . . . . . 6 (𝑣 ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} β†’ 𝑣 ∈ On)
1716ssriv 3985 . . . . 5 {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} βŠ† On
18 fvex 6903 . . . . . . 7 (cfβ€˜π΄) ∈ V
191, 18eqeltrrdi 2840 . . . . . 6 (𝐴 ∈ On β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} ∈ V)
20 intex 5336 . . . . . 6 ({π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} β‰  βˆ… ↔ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} ∈ V)
2119, 20sylibr 233 . . . . 5 (𝐴 ∈ On β†’ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} β‰  βˆ…)
22 onint 7780 . . . . 5 (({π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} βŠ† On ∧ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} β‰  βˆ…) β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
2317, 21, 22sylancr 585 . . . 4 (𝐴 ∈ On β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
241, 23eqeltrd 2831 . . 3 (𝐴 ∈ On β†’ (cfβ€˜π΄) ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
25 fveq2 6890 . . . . 5 (𝑣 = (cfβ€˜π΄) β†’ (cardβ€˜π‘£) = (cardβ€˜(cfβ€˜π΄)))
26 id 22 . . . . 5 (𝑣 = (cfβ€˜π΄) β†’ 𝑣 = (cfβ€˜π΄))
2725, 26eqeq12d 2746 . . . 4 (𝑣 = (cfβ€˜π΄) β†’ ((cardβ€˜π‘£) = 𝑣 ↔ (cardβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄)))
2827, 14vtoclga 3565 . . 3 ((cfβ€˜π΄) ∈ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} β†’ (cardβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄))
2924, 28syl 17 . 2 (𝐴 ∈ On β†’ (cardβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄))
30 cff 10245 . . . . . 6 cf:On⟢On
3130fdmi 6728 . . . . 5 dom cf = On
3231eleq2i 2823 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
33 ndmfv 6925 . . . 4 (Β¬ 𝐴 ∈ dom cf β†’ (cfβ€˜π΄) = βˆ…)
3432, 33sylnbir 330 . . 3 (Β¬ 𝐴 ∈ On β†’ (cfβ€˜π΄) = βˆ…)
35 card0 9955 . . . 4 (cardβ€˜βˆ…) = βˆ…
36 fveq2 6890 . . . 4 ((cfβ€˜π΄) = βˆ… β†’ (cardβ€˜(cfβ€˜π΄)) = (cardβ€˜βˆ…))
37 id 22 . . . 4 ((cfβ€˜π΄) = βˆ… β†’ (cfβ€˜π΄) = βˆ…)
3835, 36, 373eqtr4a 2796 . . 3 ((cfβ€˜π΄) = βˆ… β†’ (cardβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄))
3934, 38syl 17 . 2 (Β¬ 𝐴 ∈ On β†’ (cardβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄))
4029, 39pm2.61i 182 1 (cardβ€˜(cfβ€˜π΄)) = (cfβ€˜π΄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∧ wa 394   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  {cab 2707   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068  Vcvv 3472   βŠ† wss 3947  βˆ…c0 4321  βˆ© cint 4949  dom cdm 5675  Oncon0 6363  β€˜cfv 6542  cardccrd 9932  cfccf 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8705  df-en 8942  df-card 9936  df-cf 9938
This theorem is referenced by:  cfon  10252  winacard  10689
  Copyright terms: Public domain W3C validator