MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardcf Structured version   Visualization version   GIF version

Theorem cardcf 10181
Description: Cofinality is a cardinal number. Proposition 11.11 of [TakeutiZaring] p. 103. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cardcf (card‘(cf‘𝐴)) = (cf‘𝐴)

Proof of Theorem cardcf
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 10176 . . . 4 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2 vex 3448 . . . . . . . . 9 𝑣 ∈ V
3 eqeq1 2733 . . . . . . . . . . 11 (𝑥 = 𝑣 → (𝑥 = (card‘𝑦) ↔ 𝑣 = (card‘𝑦)))
43anbi1d 631 . . . . . . . . . 10 (𝑥 = 𝑣 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ (𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
54exbidv 1921 . . . . . . . . 9 (𝑥 = 𝑣 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))))
62, 5elab 3643 . . . . . . . 8 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)))
7 fveq2 6840 . . . . . . . . . . . 12 (𝑣 = (card‘𝑦) → (card‘𝑣) = (card‘(card‘𝑦)))
8 cardidm 9888 . . . . . . . . . . . 12 (card‘(card‘𝑦)) = (card‘𝑦)
97, 8eqtrdi 2780 . . . . . . . . . . 11 (𝑣 = (card‘𝑦) → (card‘𝑣) = (card‘𝑦))
10 eqeq2 2741 . . . . . . . . . . 11 (𝑣 = (card‘𝑦) → ((card‘𝑣) = 𝑣 ↔ (card‘𝑣) = (card‘𝑦)))
119, 10mpbird 257 . . . . . . . . . 10 (𝑣 = (card‘𝑦) → (card‘𝑣) = 𝑣)
1211adantr 480 . . . . . . . . 9 ((𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (card‘𝑣) = 𝑣)
1312exlimiv 1930 . . . . . . . 8 (∃𝑦(𝑣 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (card‘𝑣) = 𝑣)
146, 13sylbi 217 . . . . . . 7 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → (card‘𝑣) = 𝑣)
15 cardon 9873 . . . . . . 7 (card‘𝑣) ∈ On
1614, 15eqeltrrdi 2837 . . . . . 6 (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → 𝑣 ∈ On)
1716ssriv 3947 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
18 fvex 6853 . . . . . . 7 (cf‘𝐴) ∈ V
191, 18eqeltrrdi 2837 . . . . . 6 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V)
20 intex 5294 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ≠ ∅ ↔ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ V)
2119, 20sylibr 234 . . . . 5 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ≠ ∅)
22 onint 7746 . . . . 5 (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
2317, 21, 22sylancr 587 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
241, 23eqeltrd 2828 . . 3 (𝐴 ∈ On → (cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
25 fveq2 6840 . . . . 5 (𝑣 = (cf‘𝐴) → (card‘𝑣) = (card‘(cf‘𝐴)))
26 id 22 . . . . 5 (𝑣 = (cf‘𝐴) → 𝑣 = (cf‘𝐴))
2725, 26eqeq12d 2745 . . . 4 (𝑣 = (cf‘𝐴) → ((card‘𝑣) = 𝑣 ↔ (card‘(cf‘𝐴)) = (cf‘𝐴)))
2827, 14vtoclga 3540 . . 3 ((cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} → (card‘(cf‘𝐴)) = (cf‘𝐴))
2924, 28syl 17 . 2 (𝐴 ∈ On → (card‘(cf‘𝐴)) = (cf‘𝐴))
30 cff 10177 . . . . . 6 cf:On⟶On
3130fdmi 6681 . . . . 5 dom cf = On
3231eleq2i 2820 . . . 4 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
33 ndmfv 6875 . . . 4 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
3432, 33sylnbir 331 . . 3 𝐴 ∈ On → (cf‘𝐴) = ∅)
35 card0 9887 . . . 4 (card‘∅) = ∅
36 fveq2 6840 . . . 4 ((cf‘𝐴) = ∅ → (card‘(cf‘𝐴)) = (card‘∅))
37 id 22 . . . 4 ((cf‘𝐴) = ∅ → (cf‘𝐴) = ∅)
3835, 36, 373eqtr4a 2790 . . 3 ((cf‘𝐴) = ∅ → (card‘(cf‘𝐴)) = (cf‘𝐴))
3934, 38syl 17 . 2 𝐴 ∈ On → (card‘(cf‘𝐴)) = (cf‘𝐴))
4029, 39pm2.61i 182 1 (card‘(cf‘𝐴)) = (cf‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911  c0 4292   cint 4906  dom cdm 5631  Oncon0 6320  cfv 6499  cardccrd 9864  cfccf 9866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-card 9868  df-cf 9870
This theorem is referenced by:  cfon  10184  winacard  10621
  Copyright terms: Public domain W3C validator