MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madess Structured version   Visualization version   GIF version

Theorem madess 27933
Description: If 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
madess ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))

Proof of Theorem madess
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imass2 6132 . . . . . . . . . . 11 (𝐴𝐵 → ( M “ 𝐴) ⊆ ( M “ 𝐵))
21unissd 4941 . . . . . . . . . 10 (𝐴𝐵 ( M “ 𝐴) ⊆ ( M “ 𝐵))
32sspwd 4635 . . . . . . . . 9 (𝐴𝐵 → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
43adantl 481 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
54adantl 481 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
6 ssrexv 4078 . . . . . . 7 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
75, 6syl 17 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
8 ssrexv 4078 . . . . . . . 8 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
95, 8syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
109reximdv 3176 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
117, 10syld 47 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
1211adantr 480 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ 𝑥 No ) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
1312ss2rabdv 4099 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} ⊆ {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
14 madeval2 27910 . . . 4 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1514adantr 480 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
16 madeval2 27910 . . . . 5 (𝐵 ∈ On → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1716adantr 480 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1817adantl 481 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1913, 15, 183sstr4d 4056 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
20 madef 27913 . . . . . . 7 M :On⟶𝒫 No
2120fdmi 6758 . . . . . 6 dom M = On
2221eleq2i 2836 . . . . 5 (𝐴 ∈ dom M ↔ 𝐴 ∈ On)
23 ndmfv 6955 . . . . 5 𝐴 ∈ dom M → ( M ‘𝐴) = ∅)
2422, 23sylnbir 331 . . . 4 𝐴 ∈ On → ( M ‘𝐴) = ∅)
25 0ss 4423 . . . 4 ∅ ⊆ ( M ‘𝐵)
2624, 25eqsstrdi 4063 . . 3 𝐴 ∈ On → ( M ‘𝐴) ⊆ ( M ‘𝐵))
2726adantr 480 . 2 ((¬ 𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
2819, 27pm2.61ian 811 1 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  dom cdm 5700  cima 5703  Oncon0 6395  cfv 6573  (class class class)co 7448   No csur 27702   <<s csslt 27843   |s cscut 27845   M cmade 27899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sslt 27844  df-scut 27846  df-made 27904
This theorem is referenced by:  oldssmade  27934  madebday  27956
  Copyright terms: Public domain W3C validator