Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madess Structured version   Visualization version   GIF version

Theorem madess 33650
Description: If ordinal 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
madess ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))

Proof of Theorem madess
Dummy variables 𝑥 𝑙 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imass2 5942 . . . . . . . . . 10 (𝐴𝐵 → ( M “ 𝐴) ⊆ ( M “ 𝐵))
213ad2ant3 1132 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → ( M “ 𝐴) ⊆ ( M “ 𝐵))
32adantr 484 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝑥 No ) → ( M “ 𝐴) ⊆ ( M “ 𝐵))
43unissd 4811 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝑥 No ) → ( M “ 𝐴) ⊆ ( M “ 𝐵))
54sspwd 4512 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝑥 No ) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
6 ssrexv 3961 . . . . . 6 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
75, 6syl 17 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝑥 No ) → (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
8 ssrexv 3961 . . . . . . 7 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
95, 8syl 17 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝑥 No ) → (∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
109reximdv 3197 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝑥 No ) → (∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
117, 10syld 47 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) ∧ 𝑥 No ) → (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
1211ralrimiva 3113 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → ∀𝑥 No (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
13 ss2rab 3977 . . 3 ({𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ⊆ {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ↔ ∀𝑥 No (∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥) → ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)))
1412, 13sylibr 237 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)} ⊆ {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
15 madeval2 33631 . . 3 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
16153ad2ant1 1130 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐴)∃𝑟 ∈ 𝒫 ( M “ 𝐴)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
17 madeval2 33631 . . 3 (𝐵 ∈ On → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
18173ad2ant2 1131 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑙 ∈ 𝒫 ( M “ 𝐵)∃𝑟 ∈ 𝒫 ( M “ 𝐵)(𝑙 <<s 𝑟 ∧ (𝑙 |s 𝑟) = 𝑥)})
1914, 16, 183sstr4d 3941 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  wrex 3071  {crab 3074  wss 3860  𝒫 cpw 4497   cuni 4801   class class class wbr 5036  cima 5531  Oncon0 6174  cfv 6340  (class class class)co 7156   No csur 33440   <<s csslt 33572   |s cscut 33574   M cmade 33620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7963  df-recs 8024  df-1o 8118  df-2o 8119  df-no 33443  df-slt 33444  df-bday 33445  df-sslt 33573  df-scut 33575  df-made 33625
This theorem is referenced by:  oldssmade  33651  madebday  33671
  Copyright terms: Public domain W3C validator