MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madess Structured version   Visualization version   GIF version

Theorem madess 27795
Description: If 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
madess ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))

Proof of Theorem madess
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imass2 6076 . . . . . . . . . . 11 (𝐴𝐵 → ( M “ 𝐴) ⊆ ( M “ 𝐵))
21unissd 4884 . . . . . . . . . 10 (𝐴𝐵 ( M “ 𝐴) ⊆ ( M “ 𝐵))
32sspwd 4579 . . . . . . . . 9 (𝐴𝐵 → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
43adantl 481 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
54adantl 481 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
6 ssrexv 4019 . . . . . . 7 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
75, 6syl 17 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
8 ssrexv 4019 . . . . . . . 8 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
95, 8syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
109reximdv 3149 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
117, 10syld 47 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
1211adantr 480 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ 𝑥 No ) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
1312ss2rabdv 4042 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} ⊆ {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
14 madeval2 27768 . . . 4 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1514adantr 480 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
16 madeval2 27768 . . . . 5 (𝐵 ∈ On → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1716adantr 480 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1817adantl 481 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1913, 15, 183sstr4d 4005 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
20 madef 27771 . . . . . . 7 M :On⟶𝒫 No
2120fdmi 6702 . . . . . 6 dom M = On
2221eleq2i 2821 . . . . 5 (𝐴 ∈ dom M ↔ 𝐴 ∈ On)
23 ndmfv 6896 . . . . 5 𝐴 ∈ dom M → ( M ‘𝐴) = ∅)
2422, 23sylnbir 331 . . . 4 𝐴 ∈ On → ( M ‘𝐴) = ∅)
25 0ss 4366 . . . 4 ∅ ⊆ ( M ‘𝐵)
2624, 25eqsstrdi 3994 . . 3 𝐴 ∈ On → ( M ‘𝐴) ⊆ ( M ‘𝐵))
2726adantr 480 . 2 ((¬ 𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
2819, 27pm2.61ian 811 1 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   class class class wbr 5110  dom cdm 5641  cima 5644  Oncon0 6335  cfv 6514  (class class class)co 7390   No csur 27558   <<s csslt 27699   |s cscut 27701   M cmade 27757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-1o 8437  df-2o 8438  df-no 27561  df-slt 27562  df-bday 27563  df-sslt 27700  df-scut 27702  df-made 27762
This theorem is referenced by:  oldssmade  27796  madebday  27818
  Copyright terms: Public domain W3C validator