Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madess Structured version   Visualization version   GIF version

Theorem madess 34087
Description: If 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
madess ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))

Proof of Theorem madess
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imass2 6011 . . . . . . . . . . 11 (𝐴𝐵 → ( M “ 𝐴) ⊆ ( M “ 𝐵))
21unissd 4851 . . . . . . . . . 10 (𝐴𝐵 ( M “ 𝐴) ⊆ ( M “ 𝐵))
32sspwd 4551 . . . . . . . . 9 (𝐴𝐵 → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
43adantl 481 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
54adantl 481 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
6 ssrexv 3990 . . . . . . 7 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
75, 6syl 17 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
8 ssrexv 3990 . . . . . . . 8 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
95, 8syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
109reximdv 3161 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
117, 10syld 47 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
1211adantr 480 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ 𝑥 No ) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
1312ss2rabdv 4012 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} ⊆ {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
14 madeval2 34065 . . . 4 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1514adantr 480 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
16 madeval2 34065 . . . . 5 (𝐵 ∈ On → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1716adantr 480 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1817adantl 481 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1913, 15, 183sstr4d 3970 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
20 madef 34068 . . . . . . 7 M :On⟶𝒫 No
2120fdmi 6630 . . . . . 6 dom M = On
2221eleq2i 2825 . . . . 5 (𝐴 ∈ dom M ↔ 𝐴 ∈ On)
23 ndmfv 6824 . . . . 5 𝐴 ∈ dom M → ( M ‘𝐴) = ∅)
2422, 23sylnbir 330 . . . 4 𝐴 ∈ On → ( M ‘𝐴) = ∅)
25 0ss 4333 . . . 4 ∅ ⊆ ( M ‘𝐵)
2624, 25eqsstrdi 3977 . . 3 𝐴 ∈ On → ( M ‘𝐴) ⊆ ( M ‘𝐵))
2726adantr 480 . 2 ((¬ 𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
2819, 27pm2.61ian 808 1 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2101  wrex 3068  {crab 3221  wss 3889  c0 4259  𝒫 cpw 4536   cuni 4841   class class class wbr 5077  dom cdm 5591  cima 5594  Oncon0 6270  cfv 6447  (class class class)co 7295   No csur 33871   <<s csslt 34003   |s cscut 34005   M cmade 34054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-1o 8317  df-2o 8318  df-no 33874  df-slt 33875  df-bday 33876  df-sslt 34004  df-scut 34006  df-made 34059
This theorem is referenced by:  oldssmade  34088  madebday  34108
  Copyright terms: Public domain W3C validator