MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madess Structured version   Visualization version   GIF version

Theorem madess 27916
Description: If 𝐴 is less than or equal to ordinal 𝐵, then the made set of 𝐴 is included in the made set of 𝐵. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
madess ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))

Proof of Theorem madess
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imass2 6119 . . . . . . . . . . 11 (𝐴𝐵 → ( M “ 𝐴) ⊆ ( M “ 𝐵))
21unissd 4916 . . . . . . . . . 10 (𝐴𝐵 ( M “ 𝐴) ⊆ ( M “ 𝐵))
32sspwd 4612 . . . . . . . . 9 (𝐴𝐵 → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
43adantl 481 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴𝐵) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
54adantl 481 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → 𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵))
6 ssrexv 4052 . . . . . . 7 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
75, 6syl 17 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
8 ssrexv 4052 . . . . . . . 8 (𝒫 ( M “ 𝐴) ⊆ 𝒫 ( M “ 𝐵) → (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
95, 8syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
109reximdv 3169 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
117, 10syld 47 . . . . 5 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
1211adantr 480 . . . 4 (((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) ∧ 𝑥 No ) → (∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥) → ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)))
1312ss2rabdv 4075 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)} ⊆ {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
14 madeval2 27893 . . . 4 (𝐴 ∈ On → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1514adantr 480 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐴)∃𝑏 ∈ 𝒫 ( M “ 𝐴)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
16 madeval2 27893 . . . . 5 (𝐵 ∈ On → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1716adantr 480 . . . 4 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1817adantl 481 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐵) = {𝑥 No ∣ ∃𝑎 ∈ 𝒫 ( M “ 𝐵)∃𝑏 ∈ 𝒫 ( M “ 𝐵)(𝑎 <<s 𝑏 ∧ (𝑎 |s 𝑏) = 𝑥)})
1913, 15, 183sstr4d 4038 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
20 madef 27896 . . . . . . 7 M :On⟶𝒫 No
2120fdmi 6746 . . . . . 6 dom M = On
2221eleq2i 2832 . . . . 5 (𝐴 ∈ dom M ↔ 𝐴 ∈ On)
23 ndmfv 6940 . . . . 5 𝐴 ∈ dom M → ( M ‘𝐴) = ∅)
2422, 23sylnbir 331 . . . 4 𝐴 ∈ On → ( M ‘𝐴) = ∅)
25 0ss 4399 . . . 4 ∅ ⊆ ( M ‘𝐵)
2624, 25eqsstrdi 4027 . . 3 𝐴 ∈ On → ( M ‘𝐴) ⊆ ( M ‘𝐵))
2726adantr 480 . 2 ((¬ 𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝐴𝐵)) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
2819, 27pm2.61ian 811 1 ((𝐵 ∈ On ∧ 𝐴𝐵) → ( M ‘𝐴) ⊆ ( M ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wrex 3069  {crab 3435  wss 3950  c0 4332  𝒫 cpw 4599   cuni 4906   class class class wbr 5142  dom cdm 5684  cima 5687  Oncon0 6383  cfv 6560  (class class class)co 7432   No csur 27685   <<s csslt 27826   |s cscut 27828   M cmade 27882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-1o 8507  df-2o 8508  df-no 27688  df-slt 27689  df-bday 27690  df-sslt 27827  df-scut 27829  df-made 27887
This theorem is referenced by:  oldssmade  27917  madebday  27939
  Copyright terms: Public domain W3C validator