MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptex Structured version   Visualization version   GIF version

Theorem fvmptex 6948
Description: Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6839.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptex.1 𝐹 = (𝑥𝐴𝐵)
fvmptex.2 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
Assertion
Ref Expression
fvmptex (𝐹𝐶) = (𝐺𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fvmptex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3856 . . . 4 (𝑦 = 𝐶𝑦 / 𝑥𝐵 = 𝐶 / 𝑥𝐵)
2 fvmptex.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
3 nfcv 2891 . . . . . 6 𝑦𝐵
4 nfcsb1v 3877 . . . . . 6 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3867 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 5197 . . . . 5 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
72, 6eqtri 2752 . . . 4 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
81, 7fvmpti 6933 . . 3 (𝐶𝐴 → (𝐹𝐶) = ( I ‘𝐶 / 𝑥𝐵))
91fveq2d 6830 . . . 4 (𝑦 = 𝐶 → ( I ‘𝑦 / 𝑥𝐵) = ( I ‘𝐶 / 𝑥𝐵))
10 fvmptex.2 . . . . 5 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
11 nfcv 2891 . . . . . 6 𝑦( I ‘𝐵)
12 nfcv 2891 . . . . . . 7 𝑥 I
1312, 4nffv 6836 . . . . . 6 𝑥( I ‘𝑦 / 𝑥𝐵)
145fveq2d 6830 . . . . . 6 (𝑥 = 𝑦 → ( I ‘𝐵) = ( I ‘𝑦 / 𝑥𝐵))
1511, 13, 14cbvmpt 5197 . . . . 5 (𝑥𝐴 ↦ ( I ‘𝐵)) = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
1610, 15eqtri 2752 . . . 4 𝐺 = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
17 fvex 6839 . . . 4 ( I ‘𝐶 / 𝑥𝐵) ∈ V
189, 16, 17fvmpt 6934 . . 3 (𝐶𝐴 → (𝐺𝐶) = ( I ‘𝐶 / 𝑥𝐵))
198, 18eqtr4d 2767 . 2 (𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
202dmmptss 6194 . . . . 5 dom 𝐹𝐴
2120sseli 3933 . . . 4 (𝐶 ∈ dom 𝐹𝐶𝐴)
22 ndmfv 6859 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
2321, 22nsyl5 159 . . 3 𝐶𝐴 → (𝐹𝐶) = ∅)
24 fvex 6839 . . . . . 6 ( I ‘𝐵) ∈ V
2524, 10dmmpti 6630 . . . . 5 dom 𝐺 = 𝐴
2625eleq2i 2820 . . . 4 (𝐶 ∈ dom 𝐺𝐶𝐴)
27 ndmfv 6859 . . . 4 𝐶 ∈ dom 𝐺 → (𝐺𝐶) = ∅)
2826, 27sylnbir 331 . . 3 𝐶𝐴 → (𝐺𝐶) = ∅)
2923, 28eqtr4d 2767 . 2 𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
3019, 29pm2.61i 182 1 (𝐹𝐶) = (𝐺𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  csb 3853  c0 4286  cmpt 5176   I cid 5517  dom cdm 5623  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  fvmptnf  6956  sumeq2ii  15618  prodeq2ii  15836
  Copyright terms: Public domain W3C validator