MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptex Structured version   Visualization version   GIF version

Theorem fvmptex 6889
Description: Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6787.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptex.1 𝐹 = (𝑥𝐴𝐵)
fvmptex.2 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
Assertion
Ref Expression
fvmptex (𝐹𝐶) = (𝐺𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fvmptex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3835 . . . 4 (𝑦 = 𝐶𝑦 / 𝑥𝐵 = 𝐶 / 𝑥𝐵)
2 fvmptex.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
3 nfcv 2907 . . . . . 6 𝑦𝐵
4 nfcsb1v 3857 . . . . . 6 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3846 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 5185 . . . . 5 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
72, 6eqtri 2766 . . . 4 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
81, 7fvmpti 6874 . . 3 (𝐶𝐴 → (𝐹𝐶) = ( I ‘𝐶 / 𝑥𝐵))
91fveq2d 6778 . . . 4 (𝑦 = 𝐶 → ( I ‘𝑦 / 𝑥𝐵) = ( I ‘𝐶 / 𝑥𝐵))
10 fvmptex.2 . . . . 5 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
11 nfcv 2907 . . . . . 6 𝑦( I ‘𝐵)
12 nfcv 2907 . . . . . . 7 𝑥 I
1312, 4nffv 6784 . . . . . 6 𝑥( I ‘𝑦 / 𝑥𝐵)
145fveq2d 6778 . . . . . 6 (𝑥 = 𝑦 → ( I ‘𝐵) = ( I ‘𝑦 / 𝑥𝐵))
1511, 13, 14cbvmpt 5185 . . . . 5 (𝑥𝐴 ↦ ( I ‘𝐵)) = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
1610, 15eqtri 2766 . . . 4 𝐺 = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
17 fvex 6787 . . . 4 ( I ‘𝐶 / 𝑥𝐵) ∈ V
189, 16, 17fvmpt 6875 . . 3 (𝐶𝐴 → (𝐺𝐶) = ( I ‘𝐶 / 𝑥𝐵))
198, 18eqtr4d 2781 . 2 (𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
202dmmptss 6144 . . . . 5 dom 𝐹𝐴
2120sseli 3917 . . . 4 (𝐶 ∈ dom 𝐹𝐶𝐴)
22 ndmfv 6804 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
2321, 22nsyl5 159 . . 3 𝐶𝐴 → (𝐹𝐶) = ∅)
24 fvex 6787 . . . . . 6 ( I ‘𝐵) ∈ V
2524, 10dmmpti 6577 . . . . 5 dom 𝐺 = 𝐴
2625eleq2i 2830 . . . 4 (𝐶 ∈ dom 𝐺𝐶𝐴)
27 ndmfv 6804 . . . 4 𝐶 ∈ dom 𝐺 → (𝐺𝐶) = ∅)
2826, 27sylnbir 331 . . 3 𝐶𝐴 → (𝐺𝐶) = ∅)
2923, 28eqtr4d 2781 . 2 𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
3019, 29pm2.61i 182 1 (𝐹𝐶) = (𝐺𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  csb 3832  c0 4256  cmpt 5157   I cid 5488  dom cdm 5589  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  fvmptnf  6897  sumeq2ii  15405  prodeq2ii  15623
  Copyright terms: Public domain W3C validator