Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptex | Structured version Visualization version GIF version |
Description: Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6730.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fvmptex.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
fvmptex.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) |
Ref | Expression |
---|---|
fvmptex | ⊢ (𝐹‘𝐶) = (𝐺‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3814 | . . . 4 ⊢ (𝑦 = 𝐶 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) | |
2 | fvmptex.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3836 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3825 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 3, 4, 5 | cbvmpt 5156 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 2, 6 | eqtri 2765 | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 1, 7 | fvmpti 6817 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
9 | 1 | fveq2d 6721 | . . . 4 ⊢ (𝑦 = 𝐶 → ( I ‘⦋𝑦 / 𝑥⦌𝐵) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
10 | fvmptex.2 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) | |
11 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦( I ‘𝐵) | |
12 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑥 I | |
13 | 12, 4 | nffv 6727 | . . . . . 6 ⊢ Ⅎ𝑥( I ‘⦋𝑦 / 𝑥⦌𝐵) |
14 | 5 | fveq2d 6721 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ( I ‘𝐵) = ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
15 | 11, 13, 14 | cbvmpt 5156 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) = (𝑦 ∈ 𝐴 ↦ ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
16 | 10, 15 | eqtri 2765 | . . . 4 ⊢ 𝐺 = (𝑦 ∈ 𝐴 ↦ ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
17 | fvex 6730 | . . . 4 ⊢ ( I ‘⦋𝐶 / 𝑥⦌𝐵) ∈ V | |
18 | 9, 16, 17 | fvmpt 6818 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (𝐺‘𝐶) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
19 | 8, 18 | eqtr4d 2780 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) = (𝐺‘𝐶)) |
20 | 2 | dmmptss 6104 | . . . . 5 ⊢ dom 𝐹 ⊆ 𝐴 |
21 | 20 | sseli 3896 | . . . 4 ⊢ (𝐶 ∈ dom 𝐹 → 𝐶 ∈ 𝐴) |
22 | ndmfv 6747 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
23 | 21, 22 | nsyl5 162 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) = ∅) |
24 | fvex 6730 | . . . . . 6 ⊢ ( I ‘𝐵) ∈ V | |
25 | 24, 10 | dmmpti 6522 | . . . . 5 ⊢ dom 𝐺 = 𝐴 |
26 | 25 | eleq2i 2829 | . . . 4 ⊢ (𝐶 ∈ dom 𝐺 ↔ 𝐶 ∈ 𝐴) |
27 | ndmfv 6747 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐺 → (𝐺‘𝐶) = ∅) | |
28 | 26, 27 | sylnbir 334 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐺‘𝐶) = ∅) |
29 | 23, 28 | eqtr4d 2780 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) = (𝐺‘𝐶)) |
30 | 19, 29 | pm2.61i 185 | 1 ⊢ (𝐹‘𝐶) = (𝐺‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∈ wcel 2110 ⦋csb 3811 ∅c0 4237 ↦ cmpt 5135 I cid 5454 dom cdm 5551 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-fv 6388 |
This theorem is referenced by: fvmptnf 6840 sumeq2ii 15257 prodeq2ii 15475 |
Copyright terms: Public domain | W3C validator |