| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptex | Structured version Visualization version GIF version | ||
| Description: Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6919.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| fvmptex.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| fvmptex.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) |
| Ref | Expression |
|---|---|
| fvmptex | ⊢ (𝐹‘𝐶) = (𝐺‘𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3902 | . . . 4 ⊢ (𝑦 = 𝐶 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) | |
| 2 | fvmptex.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfcsb1v 3923 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 5 | csbeq1a 3913 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 6 | 3, 4, 5 | cbvmpt 5253 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 7 | 2, 6 | eqtri 2765 | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 8 | 1, 7 | fvmpti 7015 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
| 9 | 1 | fveq2d 6910 | . . . 4 ⊢ (𝑦 = 𝐶 → ( I ‘⦋𝑦 / 𝑥⦌𝐵) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
| 10 | fvmptex.2 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) | |
| 11 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑦( I ‘𝐵) | |
| 12 | nfcv 2905 | . . . . . . 7 ⊢ Ⅎ𝑥 I | |
| 13 | 12, 4 | nffv 6916 | . . . . . 6 ⊢ Ⅎ𝑥( I ‘⦋𝑦 / 𝑥⦌𝐵) |
| 14 | 5 | fveq2d 6910 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ( I ‘𝐵) = ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
| 15 | 11, 13, 14 | cbvmpt 5253 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) = (𝑦 ∈ 𝐴 ↦ ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
| 16 | 10, 15 | eqtri 2765 | . . . 4 ⊢ 𝐺 = (𝑦 ∈ 𝐴 ↦ ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
| 17 | fvex 6919 | . . . 4 ⊢ ( I ‘⦋𝐶 / 𝑥⦌𝐵) ∈ V | |
| 18 | 9, 16, 17 | fvmpt 7016 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (𝐺‘𝐶) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
| 19 | 8, 18 | eqtr4d 2780 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) = (𝐺‘𝐶)) |
| 20 | 2 | dmmptss 6261 | . . . . 5 ⊢ dom 𝐹 ⊆ 𝐴 |
| 21 | 20 | sseli 3979 | . . . 4 ⊢ (𝐶 ∈ dom 𝐹 → 𝐶 ∈ 𝐴) |
| 22 | ndmfv 6941 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
| 23 | 21, 22 | nsyl5 159 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) = ∅) |
| 24 | fvex 6919 | . . . . . 6 ⊢ ( I ‘𝐵) ∈ V | |
| 25 | 24, 10 | dmmpti 6712 | . . . . 5 ⊢ dom 𝐺 = 𝐴 |
| 26 | 25 | eleq2i 2833 | . . . 4 ⊢ (𝐶 ∈ dom 𝐺 ↔ 𝐶 ∈ 𝐴) |
| 27 | ndmfv 6941 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐺 → (𝐺‘𝐶) = ∅) | |
| 28 | 26, 27 | sylnbir 331 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐺‘𝐶) = ∅) |
| 29 | 23, 28 | eqtr4d 2780 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) = (𝐺‘𝐶)) |
| 30 | 19, 29 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) = (𝐺‘𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ⦋csb 3899 ∅c0 4333 ↦ cmpt 5225 I cid 5577 dom cdm 5685 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 |
| This theorem is referenced by: fvmptnf 7038 sumeq2ii 15729 prodeq2ii 15947 |
| Copyright terms: Public domain | W3C validator |