MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptex Structured version   Visualization version   GIF version

Theorem fvmptex 6784
Description: Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6685.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fvmptex.1 𝐹 = (𝑥𝐴𝐵)
fvmptex.2 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
Assertion
Ref Expression
fvmptex (𝐹𝐶) = (𝐺𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem fvmptex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3888 . . . 4 (𝑦 = 𝐶𝑦 / 𝑥𝐵 = 𝐶 / 𝑥𝐵)
2 fvmptex.1 . . . . 5 𝐹 = (𝑥𝐴𝐵)
3 nfcv 2979 . . . . . 6 𝑦𝐵
4 nfcsb1v 3909 . . . . . 6 𝑥𝑦 / 𝑥𝐵
5 csbeq1a 3899 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
63, 4, 5cbvmpt 5169 . . . . 5 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
72, 6eqtri 2846 . . . 4 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐵)
81, 7fvmpti 6769 . . 3 (𝐶𝐴 → (𝐹𝐶) = ( I ‘𝐶 / 𝑥𝐵))
91fveq2d 6676 . . . 4 (𝑦 = 𝐶 → ( I ‘𝑦 / 𝑥𝐵) = ( I ‘𝐶 / 𝑥𝐵))
10 fvmptex.2 . . . . 5 𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))
11 nfcv 2979 . . . . . 6 𝑦( I ‘𝐵)
12 nfcv 2979 . . . . . . 7 𝑥 I
1312, 4nffv 6682 . . . . . 6 𝑥( I ‘𝑦 / 𝑥𝐵)
145fveq2d 6676 . . . . . 6 (𝑥 = 𝑦 → ( I ‘𝐵) = ( I ‘𝑦 / 𝑥𝐵))
1511, 13, 14cbvmpt 5169 . . . . 5 (𝑥𝐴 ↦ ( I ‘𝐵)) = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
1610, 15eqtri 2846 . . . 4 𝐺 = (𝑦𝐴 ↦ ( I ‘𝑦 / 𝑥𝐵))
17 fvex 6685 . . . 4 ( I ‘𝐶 / 𝑥𝐵) ∈ V
189, 16, 17fvmpt 6770 . . 3 (𝐶𝐴 → (𝐺𝐶) = ( I ‘𝐶 / 𝑥𝐵))
198, 18eqtr4d 2861 . 2 (𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
202dmmptss 6097 . . . . . 6 dom 𝐹𝐴
2120sseli 3965 . . . . 5 (𝐶 ∈ dom 𝐹𝐶𝐴)
2221con3i 157 . . . 4 𝐶𝐴 → ¬ 𝐶 ∈ dom 𝐹)
23 ndmfv 6702 . . . 4 𝐶 ∈ dom 𝐹 → (𝐹𝐶) = ∅)
2422, 23syl 17 . . 3 𝐶𝐴 → (𝐹𝐶) = ∅)
25 fvex 6685 . . . . . 6 ( I ‘𝐵) ∈ V
2625, 10dmmpti 6494 . . . . 5 dom 𝐺 = 𝐴
2726eleq2i 2906 . . . 4 (𝐶 ∈ dom 𝐺𝐶𝐴)
28 ndmfv 6702 . . . 4 𝐶 ∈ dom 𝐺 → (𝐺𝐶) = ∅)
2927, 28sylnbir 333 . . 3 𝐶𝐴 → (𝐺𝐶) = ∅)
3024, 29eqtr4d 2861 . 2 𝐶𝐴 → (𝐹𝐶) = (𝐺𝐶))
3119, 30pm2.61i 184 1 (𝐹𝐶) = (𝐺𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  csb 3885  c0 4293  cmpt 5148   I cid 5461  dom cdm 5557  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365
This theorem is referenced by:  fvmptnf  6792  sumeq2ii  15052  prodeq2ii  15269
  Copyright terms: Public domain W3C validator