Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptex | Structured version Visualization version GIF version |
Description: Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6787.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
fvmptex.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
fvmptex.2 | ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) |
Ref | Expression |
---|---|
fvmptex | ⊢ (𝐹‘𝐶) = (𝐺‘𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3835 | . . . 4 ⊢ (𝑦 = 𝐶 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐶 / 𝑥⦌𝐵) | |
2 | fvmptex.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
4 | nfcsb1v 3857 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
5 | csbeq1a 3846 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
6 | 3, 4, 5 | cbvmpt 5185 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
7 | 2, 6 | eqtri 2766 | . . . 4 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
8 | 1, 7 | fvmpti 6874 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
9 | 1 | fveq2d 6778 | . . . 4 ⊢ (𝑦 = 𝐶 → ( I ‘⦋𝑦 / 𝑥⦌𝐵) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
10 | fvmptex.2 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) | |
11 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑦( I ‘𝐵) | |
12 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥 I | |
13 | 12, 4 | nffv 6784 | . . . . . 6 ⊢ Ⅎ𝑥( I ‘⦋𝑦 / 𝑥⦌𝐵) |
14 | 5 | fveq2d 6778 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ( I ‘𝐵) = ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
15 | 11, 13, 14 | cbvmpt 5185 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ ( I ‘𝐵)) = (𝑦 ∈ 𝐴 ↦ ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
16 | 10, 15 | eqtri 2766 | . . . 4 ⊢ 𝐺 = (𝑦 ∈ 𝐴 ↦ ( I ‘⦋𝑦 / 𝑥⦌𝐵)) |
17 | fvex 6787 | . . . 4 ⊢ ( I ‘⦋𝐶 / 𝑥⦌𝐵) ∈ V | |
18 | 9, 16, 17 | fvmpt 6875 | . . 3 ⊢ (𝐶 ∈ 𝐴 → (𝐺‘𝐶) = ( I ‘⦋𝐶 / 𝑥⦌𝐵)) |
19 | 8, 18 | eqtr4d 2781 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐹‘𝐶) = (𝐺‘𝐶)) |
20 | 2 | dmmptss 6144 | . . . . 5 ⊢ dom 𝐹 ⊆ 𝐴 |
21 | 20 | sseli 3917 | . . . 4 ⊢ (𝐶 ∈ dom 𝐹 → 𝐶 ∈ 𝐴) |
22 | ndmfv 6804 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐹 → (𝐹‘𝐶) = ∅) | |
23 | 21, 22 | nsyl5 159 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) = ∅) |
24 | fvex 6787 | . . . . . 6 ⊢ ( I ‘𝐵) ∈ V | |
25 | 24, 10 | dmmpti 6577 | . . . . 5 ⊢ dom 𝐺 = 𝐴 |
26 | 25 | eleq2i 2830 | . . . 4 ⊢ (𝐶 ∈ dom 𝐺 ↔ 𝐶 ∈ 𝐴) |
27 | ndmfv 6804 | . . . 4 ⊢ (¬ 𝐶 ∈ dom 𝐺 → (𝐺‘𝐶) = ∅) | |
28 | 26, 27 | sylnbir 331 | . . 3 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐺‘𝐶) = ∅) |
29 | 23, 28 | eqtr4d 2781 | . 2 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝐹‘𝐶) = (𝐺‘𝐶)) |
30 | 19, 29 | pm2.61i 182 | 1 ⊢ (𝐹‘𝐶) = (𝐺‘𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 ⦋csb 3832 ∅c0 4256 ↦ cmpt 5157 I cid 5488 dom cdm 5589 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: fvmptnf 6897 sumeq2ii 15405 prodeq2ii 15623 |
Copyright terms: Public domain | W3C validator |