MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopxprcov0 Structured version   Visualization version   GIF version

Theorem mpoxopxprcov0 8147
Description: If the components of the first argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, are not sets, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopxprcov0 (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑦)

Proof of Theorem mpoxopxprcov0
StepHypRef Expression
1 opelxp 5650 . 2 (⟨𝑉, 𝑊⟩ ∈ (V × V) ↔ (𝑉 ∈ V ∧ 𝑊 ∈ V))
2 mpoxopn0yelv.f . . 3 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
32mpoxopxnop0 8145 . 2 (¬ ⟨𝑉, 𝑊⟩ ∈ (V × V) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
41, 3sylnbir 331 1 (¬ (𝑉 ∈ V ∧ 𝑊 ∈ V) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  cop 4579   × cxp 5612  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922
This theorem is referenced by:  mpoxopynvov0  8148
  Copyright terms: Public domain W3C validator