| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldssmade | Structured version Visualization version GIF version | ||
| Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| oldssmade | ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elold 27787 | . . . 4 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏))) | |
| 2 | onelss 6376 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑏 ∈ 𝐴 → 𝑏 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ⊆ 𝐴) |
| 4 | madess 27794 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ⊆ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) | |
| 5 | 3, 4 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) |
| 6 | 5 | sseld 3947 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
| 7 | 6 | rexlimdva 3135 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
| 8 | 1, 7 | sylbid 240 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴))) |
| 9 | 8 | ssrdv 3954 | . 2 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
| 10 | oldf 27771 | . . . . . 6 ⊢ O :On⟶𝒫 No | |
| 11 | 10 | fdmi 6701 | . . . . 5 ⊢ dom O = On |
| 12 | 11 | eleq2i 2821 | . . . 4 ⊢ (𝐴 ∈ dom O ↔ 𝐴 ∈ On) |
| 13 | ndmfv 6895 | . . . 4 ⊢ (¬ 𝐴 ∈ dom O → ( O ‘𝐴) = ∅) | |
| 14 | 12, 13 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) = ∅) |
| 15 | 0ss 4365 | . . 3 ⊢ ∅ ⊆ ( M ‘𝐴) | |
| 16 | 14, 15 | eqsstrdi 3993 | . 2 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
| 17 | 9, 16 | pm2.61i 182 | 1 ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ⊆ wss 3916 ∅c0 4298 𝒫 cpw 4565 dom cdm 5640 Oncon0 6334 ‘cfv 6513 No csur 27557 M cmade 27756 O cold 27757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-1o 8436 df-2o 8437 df-no 27560 df-slt 27561 df-bday 27562 df-sslt 27699 df-scut 27701 df-made 27761 df-old 27762 |
| This theorem is referenced by: madeun 27801 madeoldsuc 27802 oldlim 27804 |
| Copyright terms: Public domain | W3C validator |