Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldssmade | Structured version Visualization version GIF version |
Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
oldssmade | ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elold 33980 | . . . 4 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏))) | |
2 | onelss 6293 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑏 ∈ 𝐴 → 𝑏 ⊆ 𝐴)) | |
3 | 2 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ⊆ 𝐴) |
4 | madess 33986 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ⊆ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) | |
5 | 3, 4 | syldan 590 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) |
6 | 5 | sseld 3916 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
7 | 6 | rexlimdva 3212 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
8 | 1, 7 | sylbid 239 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴))) |
9 | 8 | ssrdv 3923 | . 2 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
10 | oldf 33968 | . . . . . 6 ⊢ O :On⟶𝒫 No | |
11 | 10 | fdmi 6596 | . . . . 5 ⊢ dom O = On |
12 | 11 | eleq2i 2830 | . . . 4 ⊢ (𝐴 ∈ dom O ↔ 𝐴 ∈ On) |
13 | ndmfv 6786 | . . . 4 ⊢ (¬ 𝐴 ∈ dom O → ( O ‘𝐴) = ∅) | |
14 | 12, 13 | sylnbir 330 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) = ∅) |
15 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ ( M ‘𝐴) | |
16 | 14, 15 | eqsstrdi 3971 | . 2 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
17 | 9, 16 | pm2.61i 182 | 1 ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 dom cdm 5580 Oncon0 6251 ‘cfv 6418 No csur 33770 M cmade 33953 O cold 33954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 df-old 33959 |
This theorem is referenced by: madeun 33993 madeoldsuc 33994 oldlim 33996 |
Copyright terms: Public domain | W3C validator |