Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldssmade Structured version   Visualization version   GIF version

 Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 7-Aug-2024.)
Assertion
Ref Expression
oldssmade (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))

Dummy variables 𝑥 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elold 33609 . . 3 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑥 ∈ ( M ‘𝑏)))
2 onelon 6194 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝑏 ∈ On)
3 simpl 486 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝐴 ∈ On)
4 onelss 6211 . . . . . . 7 (𝐴 ∈ On → (𝑏𝐴𝑏𝐴))
54imp 410 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝑏𝐴)
6 madess 33616 . . . . . 6 ((𝑏 ∈ On ∧ 𝐴 ∈ On ∧ 𝑏𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴))
72, 3, 5, 6syl3anc 1368 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴))
87sseld 3891 . . . 4 ((𝐴 ∈ On ∧ 𝑏𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴)))
98rexlimdva 3208 . . 3 (𝐴 ∈ On → (∃𝑏𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴)))
101, 9sylbid 243 . 2 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴)))
1110ssrdv 3898 1 (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2111  ∃wrex 3071   ⊆ wss 3858  Oncon0 6169  ‘cfv 6335   M cmade 33586   O cold 33587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-wrecs 7957  df-recs 8018  df-1o 8112  df-2o 8113  df-no 33411  df-slt 33412  df-bday 33413  df-sslt 33541  df-scut 33543  df-made 33591  df-old 33592 This theorem is referenced by:  madeun  33623  madeoldsuc  33624  oldlim  33626
 Copyright terms: Public domain W3C validator