![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldssmade | Structured version Visualization version GIF version |
Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
oldssmade | β’ ( O βπ΄) β ( M βπ΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elold 27783 | . . . 4 β’ (π΄ β On β (π₯ β ( O βπ΄) β βπ β π΄ π₯ β ( M βπ))) | |
2 | onelss 6405 | . . . . . . . 8 β’ (π΄ β On β (π β π΄ β π β π΄)) | |
3 | 2 | imp 406 | . . . . . . 7 β’ ((π΄ β On β§ π β π΄) β π β π΄) |
4 | madess 27790 | . . . . . . 7 β’ ((π΄ β On β§ π β π΄) β ( M βπ) β ( M βπ΄)) | |
5 | 3, 4 | syldan 590 | . . . . . 6 β’ ((π΄ β On β§ π β π΄) β ( M βπ) β ( M βπ΄)) |
6 | 5 | sseld 3977 | . . . . 5 β’ ((π΄ β On β§ π β π΄) β (π₯ β ( M βπ) β π₯ β ( M βπ΄))) |
7 | 6 | rexlimdva 3150 | . . . 4 β’ (π΄ β On β (βπ β π΄ π₯ β ( M βπ) β π₯ β ( M βπ΄))) |
8 | 1, 7 | sylbid 239 | . . 3 β’ (π΄ β On β (π₯ β ( O βπ΄) β π₯ β ( M βπ΄))) |
9 | 8 | ssrdv 3984 | . 2 β’ (π΄ β On β ( O βπ΄) β ( M βπ΄)) |
10 | oldf 27771 | . . . . . 6 β’ O :OnβΆπ« No | |
11 | 10 | fdmi 6728 | . . . . 5 β’ dom O = On |
12 | 11 | eleq2i 2820 | . . . 4 β’ (π΄ β dom O β π΄ β On) |
13 | ndmfv 6926 | . . . 4 β’ (Β¬ π΄ β dom O β ( O βπ΄) = β ) | |
14 | 12, 13 | sylnbir 331 | . . 3 β’ (Β¬ π΄ β On β ( O βπ΄) = β ) |
15 | 0ss 4392 | . . 3 β’ β β ( M βπ΄) | |
16 | 14, 15 | eqsstrdi 4032 | . 2 β’ (Β¬ π΄ β On β ( O βπ΄) β ( M βπ΄)) |
17 | 9, 16 | pm2.61i 182 | 1 β’ ( O βπ΄) β ( M βπ΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β§ wa 395 = wceq 1534 β wcel 2099 βwrex 3065 β wss 3944 β c0 4318 π« cpw 4598 dom cdm 5672 Oncon0 6363 βcfv 6542 No csur 27560 M cmade 27756 O cold 27757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-2o 8481 df-no 27563 df-slt 27564 df-bday 27565 df-sslt 27701 df-scut 27703 df-made 27761 df-old 27762 |
This theorem is referenced by: madeun 27797 madeoldsuc 27798 oldlim 27800 |
Copyright terms: Public domain | W3C validator |