Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldssmade Structured version   Visualization version   GIF version

Theorem oldssmade 33987
Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
oldssmade ( O ‘𝐴) ⊆ ( M ‘𝐴)

Proof of Theorem oldssmade
Dummy variables 𝑥 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elold 33980 . . . 4 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑥 ∈ ( M ‘𝑏)))
2 onelss 6293 . . . . . . . 8 (𝐴 ∈ On → (𝑏𝐴𝑏𝐴))
32imp 406 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝑏𝐴)
4 madess 33986 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴))
53, 4syldan 590 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴))
65sseld 3916 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴)))
76rexlimdva 3212 . . . 4 (𝐴 ∈ On → (∃𝑏𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴)))
81, 7sylbid 239 . . 3 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴)))
98ssrdv 3923 . 2 (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
10 oldf 33968 . . . . . 6 O :On⟶𝒫 No
1110fdmi 6596 . . . . 5 dom O = On
1211eleq2i 2830 . . . 4 (𝐴 ∈ dom O ↔ 𝐴 ∈ On)
13 ndmfv 6786 . . . 4 𝐴 ∈ dom O → ( O ‘𝐴) = ∅)
1412, 13sylnbir 330 . . 3 𝐴 ∈ On → ( O ‘𝐴) = ∅)
15 0ss 4327 . . 3 ∅ ⊆ ( M ‘𝐴)
1614, 15eqsstrdi 3971 . 2 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
179, 16pm2.61i 182 1 ( O ‘𝐴) ⊆ ( M ‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  wrex 3064  wss 3883  c0 4253  𝒫 cpw 4530  dom cdm 5580  Oncon0 6251  cfv 6418   No csur 33770   M cmade 33953   O cold 33954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775  df-sslt 33903  df-scut 33905  df-made 33958  df-old 33959
This theorem is referenced by:  madeun  33993  madeoldsuc  33994  oldlim  33996
  Copyright terms: Public domain W3C validator