| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldssmade | Structured version Visualization version GIF version | ||
| Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| oldssmade | ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elold 27815 | . . . 4 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏))) | |
| 2 | onelss 6353 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑏 ∈ 𝐴 → 𝑏 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ⊆ 𝐴) |
| 4 | madess 27822 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ⊆ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) | |
| 5 | 3, 4 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) |
| 6 | 5 | sseld 3929 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
| 7 | 6 | rexlimdva 3134 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
| 8 | 1, 7 | sylbid 240 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴))) |
| 9 | 8 | ssrdv 3936 | . 2 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
| 10 | oldf 27799 | . . . . . 6 ⊢ O :On⟶𝒫 No | |
| 11 | 10 | fdmi 6667 | . . . . 5 ⊢ dom O = On |
| 12 | 11 | eleq2i 2825 | . . . 4 ⊢ (𝐴 ∈ dom O ↔ 𝐴 ∈ On) |
| 13 | ndmfv 6860 | . . . 4 ⊢ (¬ 𝐴 ∈ dom O → ( O ‘𝐴) = ∅) | |
| 14 | 12, 13 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) = ∅) |
| 15 | 0ss 4349 | . . 3 ⊢ ∅ ⊆ ( M ‘𝐴) | |
| 16 | 14, 15 | eqsstrdi 3975 | . 2 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
| 17 | 9, 16 | pm2.61i 182 | 1 ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 dom cdm 5619 Oncon0 6311 ‘cfv 6486 No csur 27579 M cmade 27784 O cold 27785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-1o 8391 df-2o 8392 df-no 27582 df-slt 27583 df-bday 27584 df-sslt 27722 df-scut 27724 df-made 27789 df-old 27790 |
| This theorem is referenced by: madeun 27830 madeoldsuc 27831 oldlim 27833 |
| Copyright terms: Public domain | W3C validator |