![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldssmade | Structured version Visualization version GIF version |
Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
oldssmade | β’ ( O βπ΄) β ( M βπ΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elold 27598 | . . . 4 β’ (π΄ β On β (π₯ β ( O βπ΄) β βπ β π΄ π₯ β ( M βπ))) | |
2 | onelss 6407 | . . . . . . . 8 β’ (π΄ β On β (π β π΄ β π β π΄)) | |
3 | 2 | imp 406 | . . . . . . 7 β’ ((π΄ β On β§ π β π΄) β π β π΄) |
4 | madess 27605 | . . . . . . 7 β’ ((π΄ β On β§ π β π΄) β ( M βπ) β ( M βπ΄)) | |
5 | 3, 4 | syldan 590 | . . . . . 6 β’ ((π΄ β On β§ π β π΄) β ( M βπ) β ( M βπ΄)) |
6 | 5 | sseld 3982 | . . . . 5 β’ ((π΄ β On β§ π β π΄) β (π₯ β ( M βπ) β π₯ β ( M βπ΄))) |
7 | 6 | rexlimdva 3154 | . . . 4 β’ (π΄ β On β (βπ β π΄ π₯ β ( M βπ) β π₯ β ( M βπ΄))) |
8 | 1, 7 | sylbid 239 | . . 3 β’ (π΄ β On β (π₯ β ( O βπ΄) β π₯ β ( M βπ΄))) |
9 | 8 | ssrdv 3989 | . 2 β’ (π΄ β On β ( O βπ΄) β ( M βπ΄)) |
10 | oldf 27586 | . . . . . 6 β’ O :OnβΆπ« No | |
11 | 10 | fdmi 6730 | . . . . 5 β’ dom O = On |
12 | 11 | eleq2i 2824 | . . . 4 β’ (π΄ β dom O β π΄ β On) |
13 | ndmfv 6927 | . . . 4 β’ (Β¬ π΄ β dom O β ( O βπ΄) = β ) | |
14 | 12, 13 | sylnbir 330 | . . 3 β’ (Β¬ π΄ β On β ( O βπ΄) = β ) |
15 | 0ss 4397 | . . 3 β’ β β ( M βπ΄) | |
16 | 14, 15 | eqsstrdi 4037 | . 2 β’ (Β¬ π΄ β On β ( O βπ΄) β ( M βπ΄)) |
17 | 9, 16 | pm2.61i 182 | 1 β’ ( O βπ΄) β ( M βπ΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β§ wa 395 = wceq 1540 β wcel 2105 βwrex 3069 β wss 3949 β c0 4323 π« cpw 4603 dom cdm 5677 Oncon0 6365 βcfv 6544 No csur 27376 M cmade 27571 O cold 27572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-1o 8469 df-2o 8470 df-no 27379 df-slt 27380 df-bday 27381 df-sslt 27516 df-scut 27518 df-made 27576 df-old 27577 |
This theorem is referenced by: madeun 27612 madeoldsuc 27613 oldlim 27615 |
Copyright terms: Public domain | W3C validator |