![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldssmade | Structured version Visualization version GIF version |
Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
oldssmade | β’ ( O βπ΄) β ( M βπ΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elold 27826 | . . . 4 β’ (π΄ β On β (π₯ β ( O βπ΄) β βπ β π΄ π₯ β ( M βπ))) | |
2 | onelss 6411 | . . . . . . . 8 β’ (π΄ β On β (π β π΄ β π β π΄)) | |
3 | 2 | imp 405 | . . . . . . 7 β’ ((π΄ β On β§ π β π΄) β π β π΄) |
4 | madess 27833 | . . . . . . 7 β’ ((π΄ β On β§ π β π΄) β ( M βπ) β ( M βπ΄)) | |
5 | 3, 4 | syldan 589 | . . . . . 6 β’ ((π΄ β On β§ π β π΄) β ( M βπ) β ( M βπ΄)) |
6 | 5 | sseld 3976 | . . . . 5 β’ ((π΄ β On β§ π β π΄) β (π₯ β ( M βπ) β π₯ β ( M βπ΄))) |
7 | 6 | rexlimdva 3145 | . . . 4 β’ (π΄ β On β (βπ β π΄ π₯ β ( M βπ) β π₯ β ( M βπ΄))) |
8 | 1, 7 | sylbid 239 | . . 3 β’ (π΄ β On β (π₯ β ( O βπ΄) β π₯ β ( M βπ΄))) |
9 | 8 | ssrdv 3983 | . 2 β’ (π΄ β On β ( O βπ΄) β ( M βπ΄)) |
10 | oldf 27814 | . . . . . 6 β’ O :OnβΆπ« No | |
11 | 10 | fdmi 6732 | . . . . 5 β’ dom O = On |
12 | 11 | eleq2i 2817 | . . . 4 β’ (π΄ β dom O β π΄ β On) |
13 | ndmfv 6929 | . . . 4 β’ (Β¬ π΄ β dom O β ( O βπ΄) = β ) | |
14 | 12, 13 | sylnbir 330 | . . 3 β’ (Β¬ π΄ β On β ( O βπ΄) = β ) |
15 | 0ss 4397 | . . 3 β’ β β ( M βπ΄) | |
16 | 14, 15 | eqsstrdi 4032 | . 2 β’ (Β¬ π΄ β On β ( O βπ΄) β ( M βπ΄)) |
17 | 9, 16 | pm2.61i 182 | 1 β’ ( O βπ΄) β ( M βπ΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β§ wa 394 = wceq 1533 β wcel 2098 βwrex 3060 β wss 3945 β c0 4323 π« cpw 4603 dom cdm 5677 Oncon0 6369 βcfv 6547 No csur 27603 M cmade 27799 O cold 27800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-no 27606 df-slt 27607 df-bday 27608 df-sslt 27744 df-scut 27746 df-made 27804 df-old 27805 |
This theorem is referenced by: madeun 27840 madeoldsuc 27841 oldlim 27843 |
Copyright terms: Public domain | W3C validator |