Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldssmade | Structured version Visualization version GIF version |
Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 7-Aug-2024.) |
Ref | Expression |
---|---|
oldssmade | ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elold 33609 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏))) | |
2 | onelon 6194 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ∈ On) | |
3 | simpl 486 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝐴 ∈ On) | |
4 | onelss 6211 | . . . . . . 7 ⊢ (𝐴 ∈ On → (𝑏 ∈ 𝐴 → 𝑏 ⊆ 𝐴)) | |
5 | 4 | imp 410 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ⊆ 𝐴) |
6 | madess 33616 | . . . . . 6 ⊢ ((𝑏 ∈ On ∧ 𝐴 ∈ On ∧ 𝑏 ⊆ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) | |
7 | 2, 3, 5, 6 | syl3anc 1368 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) |
8 | 7 | sseld 3891 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
9 | 8 | rexlimdva 3208 | . . 3 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
10 | 1, 9 | sylbid 243 | . 2 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴))) |
11 | 10 | ssrdv 3898 | 1 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ∃wrex 3071 ⊆ wss 3858 Oncon0 6169 ‘cfv 6335 M cmade 33586 O cold 33587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-wrecs 7957 df-recs 8018 df-1o 8112 df-2o 8113 df-no 33411 df-slt 33412 df-bday 33413 df-sslt 33541 df-scut 33543 df-made 33591 df-old 33592 |
This theorem is referenced by: madeun 33623 madeoldsuc 33624 oldlim 33626 |
Copyright terms: Public domain | W3C validator |