| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldssmade | Structured version Visualization version GIF version | ||
| Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| oldssmade | ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elold 27838 | . . . 4 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏))) | |
| 2 | onelss 6399 | . . . . . . . 8 ⊢ (𝐴 ∈ On → (𝑏 ∈ 𝐴 → 𝑏 ⊆ 𝐴)) | |
| 3 | 2 | imp 406 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → 𝑏 ⊆ 𝐴) |
| 4 | madess 27845 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝑏 ⊆ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) | |
| 5 | 3, 4 | syldan 591 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴)) |
| 6 | 5 | sseld 3962 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ 𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
| 7 | 6 | rexlimdva 3142 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑏 ∈ 𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴))) |
| 8 | 1, 7 | sylbid 240 | . . 3 ⊢ (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴))) |
| 9 | 8 | ssrdv 3969 | . 2 ⊢ (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
| 10 | oldf 27822 | . . . . . 6 ⊢ O :On⟶𝒫 No | |
| 11 | 10 | fdmi 6722 | . . . . 5 ⊢ dom O = On |
| 12 | 11 | eleq2i 2827 | . . . 4 ⊢ (𝐴 ∈ dom O ↔ 𝐴 ∈ On) |
| 13 | ndmfv 6916 | . . . 4 ⊢ (¬ 𝐴 ∈ dom O → ( O ‘𝐴) = ∅) | |
| 14 | 12, 13 | sylnbir 331 | . . 3 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) = ∅) |
| 15 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ ( M ‘𝐴) | |
| 16 | 14, 15 | eqsstrdi 4008 | . 2 ⊢ (¬ 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴)) |
| 17 | 9, 16 | pm2.61i 182 | 1 ⊢ ( O ‘𝐴) ⊆ ( M ‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 dom cdm 5659 Oncon0 6357 ‘cfv 6536 No csur 27608 M cmade 27807 O cold 27808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sslt 27750 df-scut 27752 df-made 27812 df-old 27813 |
| This theorem is referenced by: madeun 27852 madeoldsuc 27853 oldlim 27855 |
| Copyright terms: Public domain | W3C validator |