MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldssmade Structured version   Visualization version   GIF version

Theorem oldssmade 27295
Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
oldssmade ( O ‘𝐴) ⊆ ( M ‘𝐴)

Proof of Theorem oldssmade
Dummy variables 𝑥 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elold 27287 . . . 4 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑥 ∈ ( M ‘𝑏)))
2 onelss 6395 . . . . . . . 8 (𝐴 ∈ On → (𝑏𝐴𝑏𝐴))
32imp 407 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝑏𝐴)
4 madess 27294 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴))
53, 4syldan 591 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴))
65sseld 3977 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴)))
76rexlimdva 3154 . . . 4 (𝐴 ∈ On → (∃𝑏𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴)))
81, 7sylbid 239 . . 3 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴)))
98ssrdv 3984 . 2 (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
10 oldf 27275 . . . . . 6 O :On⟶𝒫 No
1110fdmi 6716 . . . . 5 dom O = On
1211eleq2i 2824 . . . 4 (𝐴 ∈ dom O ↔ 𝐴 ∈ On)
13 ndmfv 6913 . . . 4 𝐴 ∈ dom O → ( O ‘𝐴) = ∅)
1412, 13sylnbir 330 . . 3 𝐴 ∈ On → ( O ‘𝐴) = ∅)
15 0ss 4392 . . 3 ∅ ⊆ ( M ‘𝐴)
1614, 15eqsstrdi 4032 . 2 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
179, 16pm2.61i 182 1 ( O ‘𝐴) ⊆ ( M ‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  wrex 3069  wss 3944  c0 4318  𝒫 cpw 4596  dom cdm 5669  Oncon0 6353  cfv 6532   No csur 27070   M cmade 27260   O cold 27261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-1o 8448  df-2o 8449  df-no 27073  df-slt 27074  df-bday 27075  df-sslt 27209  df-scut 27211  df-made 27265  df-old 27266
This theorem is referenced by:  madeun  27301  madeoldsuc  27302  oldlim  27304
  Copyright terms: Public domain W3C validator