MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldssmade Structured version   Visualization version   GIF version

Theorem oldssmade 27820
Description: The older-than set is a subset of the made set. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
oldssmade ( O ‘𝐴) ⊆ ( M ‘𝐴)

Proof of Theorem oldssmade
Dummy variables 𝑥 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elold 27812 . . . 4 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) ↔ ∃𝑏𝐴 𝑥 ∈ ( M ‘𝑏)))
2 onelss 6348 . . . . . . . 8 (𝐴 ∈ On → (𝑏𝐴𝑏𝐴))
32imp 406 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → 𝑏𝐴)
4 madess 27819 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴))
53, 4syldan 591 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏𝐴) → ( M ‘𝑏) ⊆ ( M ‘𝐴))
65sseld 3933 . . . . 5 ((𝐴 ∈ On ∧ 𝑏𝐴) → (𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴)))
76rexlimdva 3133 . . . 4 (𝐴 ∈ On → (∃𝑏𝐴 𝑥 ∈ ( M ‘𝑏) → 𝑥 ∈ ( M ‘𝐴)))
81, 7sylbid 240 . . 3 (𝐴 ∈ On → (𝑥 ∈ ( O ‘𝐴) → 𝑥 ∈ ( M ‘𝐴)))
98ssrdv 3940 . 2 (𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
10 oldf 27796 . . . . . 6 O :On⟶𝒫 No
1110fdmi 6662 . . . . 5 dom O = On
1211eleq2i 2823 . . . 4 (𝐴 ∈ dom O ↔ 𝐴 ∈ On)
13 ndmfv 6854 . . . 4 𝐴 ∈ dom O → ( O ‘𝐴) = ∅)
1412, 13sylnbir 331 . . 3 𝐴 ∈ On → ( O ‘𝐴) = ∅)
15 0ss 4350 . . 3 ∅ ⊆ ( M ‘𝐴)
1614, 15eqsstrdi 3979 . 2 𝐴 ∈ On → ( O ‘𝐴) ⊆ ( M ‘𝐴))
179, 16pm2.61i 182 1 ( O ‘𝐴) ⊆ ( M ‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3902  c0 4283  𝒫 cpw 4550  dom cdm 5616  Oncon0 6306  cfv 6481   No csur 27576   M cmade 27781   O cold 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27579  df-slt 27580  df-bday 27581  df-sslt 27719  df-scut 27721  df-made 27786  df-old 27787
This theorem is referenced by:  madeun  27827  madeoldsuc  27828  oldlim  27830
  Copyright terms: Public domain W3C validator