MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephcard Structured version   Visualization version   GIF version

Theorem alephcard 10089
Description: Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephcard (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)

Proof of Theorem alephcard
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6886 . . . 4 (𝑥 = ∅ → (card‘(ℵ‘𝑥)) = (card‘(ℵ‘∅)))
2 fveq2 6881 . . . 4 (𝑥 = ∅ → (ℵ‘𝑥) = (ℵ‘∅))
31, 2eqeq12d 2752 . . 3 (𝑥 = ∅ → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘∅)) = (ℵ‘∅)))
4 2fveq3 6886 . . . 4 (𝑥 = 𝑦 → (card‘(ℵ‘𝑥)) = (card‘(ℵ‘𝑦)))
5 fveq2 6881 . . . 4 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
64, 5eqeq12d 2752 . . 3 (𝑥 = 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)))
7 2fveq3 6886 . . . 4 (𝑥 = suc 𝑦 → (card‘(ℵ‘𝑥)) = (card‘(ℵ‘suc 𝑦)))
8 fveq2 6881 . . . 4 (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦))
97, 8eqeq12d 2752 . . 3 (𝑥 = suc 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦)))
10 2fveq3 6886 . . . 4 (𝑥 = 𝐴 → (card‘(ℵ‘𝑥)) = (card‘(ℵ‘𝐴)))
11 fveq2 6881 . . . 4 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
1210, 11eqeq12d 2752 . . 3 (𝑥 = 𝐴 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)))
13 cardom 10005 . . . 4 (card‘ω) = ω
14 aleph0 10085 . . . . 5 (ℵ‘∅) = ω
1514fveq2i 6884 . . . 4 (card‘(ℵ‘∅)) = (card‘ω)
1613, 15, 143eqtr4i 2769 . . 3 (card‘(ℵ‘∅)) = (ℵ‘∅)
17 harcard 9997 . . . . 5 (card‘(har‘(ℵ‘𝑦))) = (har‘(ℵ‘𝑦))
18 alephsuc 10087 . . . . . 6 (𝑦 ∈ On → (ℵ‘suc 𝑦) = (har‘(ℵ‘𝑦)))
1918fveq2d 6885 . . . . 5 (𝑦 ∈ On → (card‘(ℵ‘suc 𝑦)) = (card‘(har‘(ℵ‘𝑦))))
2017, 19, 183eqtr4a 2797 . . . 4 (𝑦 ∈ On → (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦))
2120a1d 25 . . 3 (𝑦 ∈ On → ((card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦)))
22 cardiun 10001 . . . . . . 7 (𝑥 ∈ V → (∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘ 𝑦𝑥 (ℵ‘𝑦)) = 𝑦𝑥 (ℵ‘𝑦)))
2322elv 3469 . . . . . 6 (∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘ 𝑦𝑥 (ℵ‘𝑦)) = 𝑦𝑥 (ℵ‘𝑦))
2423adantl 481 . . . . 5 ((Lim 𝑥 ∧ ∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘ 𝑦𝑥 (ℵ‘𝑦)) = 𝑦𝑥 (ℵ‘𝑦))
25 vex 3468 . . . . . . . 8 𝑥 ∈ V
26 alephlim 10086 . . . . . . . 8 ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2725, 26mpan 690 . . . . . . 7 (Lim 𝑥 → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2827adantr 480 . . . . . 6 ((Lim 𝑥 ∧ ∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (ℵ‘𝑥) = 𝑦𝑥 (ℵ‘𝑦))
2928fveq2d 6885 . . . . 5 ((Lim 𝑥 ∧ ∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘(ℵ‘𝑥)) = (card‘ 𝑦𝑥 (ℵ‘𝑦)))
3024, 29, 283eqtr4d 2781 . . . 4 ((Lim 𝑥 ∧ ∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘(ℵ‘𝑥)) = (ℵ‘𝑥))
3130ex 412 . . 3 (Lim 𝑥 → (∀𝑦𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘(ℵ‘𝑥)) = (ℵ‘𝑥)))
323, 6, 9, 12, 16, 21, 31tfinds 7860 . 2 (𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (ℵ‘𝐴))
33 card0 9977 . . 3 (card‘∅) = ∅
34 alephfnon 10084 . . . . . . 7 ℵ Fn On
3534fndmi 6647 . . . . . 6 dom ℵ = On
3635eleq2i 2827 . . . . 5 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
37 ndmfv 6916 . . . . 5 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
3836, 37sylnbir 331 . . . 4 𝐴 ∈ On → (ℵ‘𝐴) = ∅)
3938fveq2d 6885 . . 3 𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (card‘∅))
4033, 39, 383eqtr4a 2797 . 2 𝐴 ∈ On → (card‘(ℵ‘𝐴)) = (ℵ‘𝐴))
4132, 40pm2.61i 182 1 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  c0 4313   ciun 4972  dom cdm 5659  Oncon0 6357  Lim wlim 6358  suc csuc 6359  cfv 6536  ωcom 7866  harchar 9575  cardccrd 9954  cale 9955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-har 9576  df-card 9958  df-aleph 9959
This theorem is referenced by:  alephnbtwn2  10091  alephord2  10095  alephsuc2  10099  alephislim  10102  alephsdom  10105  cardaleph  10108  cardalephex  10109  alephval3  10129  alephval2  10591  alephsuc3  10599  alephreg  10601  pwcfsdom  10602  minregex2  43526
  Copyright terms: Public domain W3C validator