MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephcard Structured version   Visualization version   GIF version

Theorem alephcard 10069
Description: Every aleph is a cardinal number. Theorem 65 of [Suppes] p. 229. (Contributed by NM, 25-Oct-2003.) (Revised by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
alephcard (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄)

Proof of Theorem alephcard
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6896 . . . 4 (π‘₯ = βˆ… β†’ (cardβ€˜(β„΅β€˜π‘₯)) = (cardβ€˜(β„΅β€˜βˆ…)))
2 fveq2 6891 . . . 4 (π‘₯ = βˆ… β†’ (β„΅β€˜π‘₯) = (β„΅β€˜βˆ…))
31, 2eqeq12d 2747 . . 3 (π‘₯ = βˆ… β†’ ((cardβ€˜(β„΅β€˜π‘₯)) = (β„΅β€˜π‘₯) ↔ (cardβ€˜(β„΅β€˜βˆ…)) = (β„΅β€˜βˆ…)))
4 2fveq3 6896 . . . 4 (π‘₯ = 𝑦 β†’ (cardβ€˜(β„΅β€˜π‘₯)) = (cardβ€˜(β„΅β€˜π‘¦)))
5 fveq2 6891 . . . 4 (π‘₯ = 𝑦 β†’ (β„΅β€˜π‘₯) = (β„΅β€˜π‘¦))
64, 5eqeq12d 2747 . . 3 (π‘₯ = 𝑦 β†’ ((cardβ€˜(β„΅β€˜π‘₯)) = (β„΅β€˜π‘₯) ↔ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)))
7 2fveq3 6896 . . . 4 (π‘₯ = suc 𝑦 β†’ (cardβ€˜(β„΅β€˜π‘₯)) = (cardβ€˜(β„΅β€˜suc 𝑦)))
8 fveq2 6891 . . . 4 (π‘₯ = suc 𝑦 β†’ (β„΅β€˜π‘₯) = (β„΅β€˜suc 𝑦))
97, 8eqeq12d 2747 . . 3 (π‘₯ = suc 𝑦 β†’ ((cardβ€˜(β„΅β€˜π‘₯)) = (β„΅β€˜π‘₯) ↔ (cardβ€˜(β„΅β€˜suc 𝑦)) = (β„΅β€˜suc 𝑦)))
10 2fveq3 6896 . . . 4 (π‘₯ = 𝐴 β†’ (cardβ€˜(β„΅β€˜π‘₯)) = (cardβ€˜(β„΅β€˜π΄)))
11 fveq2 6891 . . . 4 (π‘₯ = 𝐴 β†’ (β„΅β€˜π‘₯) = (β„΅β€˜π΄))
1210, 11eqeq12d 2747 . . 3 (π‘₯ = 𝐴 β†’ ((cardβ€˜(β„΅β€˜π‘₯)) = (β„΅β€˜π‘₯) ↔ (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄)))
13 cardom 9985 . . . 4 (cardβ€˜Ο‰) = Ο‰
14 aleph0 10065 . . . . 5 (β„΅β€˜βˆ…) = Ο‰
1514fveq2i 6894 . . . 4 (cardβ€˜(β„΅β€˜βˆ…)) = (cardβ€˜Ο‰)
1613, 15, 143eqtr4i 2769 . . 3 (cardβ€˜(β„΅β€˜βˆ…)) = (β„΅β€˜βˆ…)
17 harcard 9977 . . . . 5 (cardβ€˜(harβ€˜(β„΅β€˜π‘¦))) = (harβ€˜(β„΅β€˜π‘¦))
18 alephsuc 10067 . . . . . 6 (𝑦 ∈ On β†’ (β„΅β€˜suc 𝑦) = (harβ€˜(β„΅β€˜π‘¦)))
1918fveq2d 6895 . . . . 5 (𝑦 ∈ On β†’ (cardβ€˜(β„΅β€˜suc 𝑦)) = (cardβ€˜(harβ€˜(β„΅β€˜π‘¦))))
2017, 19, 183eqtr4a 2797 . . . 4 (𝑦 ∈ On β†’ (cardβ€˜(β„΅β€˜suc 𝑦)) = (β„΅β€˜suc 𝑦))
2120a1d 25 . . 3 (𝑦 ∈ On β†’ ((cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦) β†’ (cardβ€˜(β„΅β€˜suc 𝑦)) = (β„΅β€˜suc 𝑦)))
22 cardiun 9981 . . . . . . 7 (π‘₯ ∈ V β†’ (βˆ€π‘¦ ∈ π‘₯ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦) β†’ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦)) = βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦)))
2322elv 3479 . . . . . 6 (βˆ€π‘¦ ∈ π‘₯ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦) β†’ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦)) = βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦))
2423adantl 481 . . . . 5 ((Lim π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)) β†’ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦)) = βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦))
25 vex 3477 . . . . . . . 8 π‘₯ ∈ V
26 alephlim 10066 . . . . . . . 8 ((π‘₯ ∈ V ∧ Lim π‘₯) β†’ (β„΅β€˜π‘₯) = βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦))
2725, 26mpan 687 . . . . . . 7 (Lim π‘₯ β†’ (β„΅β€˜π‘₯) = βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦))
2827adantr 480 . . . . . 6 ((Lim π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)) β†’ (β„΅β€˜π‘₯) = βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦))
2928fveq2d 6895 . . . . 5 ((Lim π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)) β†’ (cardβ€˜(β„΅β€˜π‘₯)) = (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ (β„΅β€˜π‘¦)))
3024, 29, 283eqtr4d 2781 . . . 4 ((Lim π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)) β†’ (cardβ€˜(β„΅β€˜π‘₯)) = (β„΅β€˜π‘₯))
3130ex 412 . . 3 (Lim π‘₯ β†’ (βˆ€π‘¦ ∈ π‘₯ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦) β†’ (cardβ€˜(β„΅β€˜π‘₯)) = (β„΅β€˜π‘₯)))
323, 6, 9, 12, 16, 21, 31tfinds 7853 . 2 (𝐴 ∈ On β†’ (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄))
33 card0 9957 . . 3 (cardβ€˜βˆ…) = βˆ…
34 alephfnon 10064 . . . . . . 7 β„΅ Fn On
3534fndmi 6653 . . . . . 6 dom β„΅ = On
3635eleq2i 2824 . . . . 5 (𝐴 ∈ dom β„΅ ↔ 𝐴 ∈ On)
37 ndmfv 6926 . . . . 5 (Β¬ 𝐴 ∈ dom β„΅ β†’ (β„΅β€˜π΄) = βˆ…)
3836, 37sylnbir 331 . . . 4 (Β¬ 𝐴 ∈ On β†’ (β„΅β€˜π΄) = βˆ…)
3938fveq2d 6895 . . 3 (Β¬ 𝐴 ∈ On β†’ (cardβ€˜(β„΅β€˜π΄)) = (cardβ€˜βˆ…))
4033, 39, 383eqtr4a 2797 . 2 (Β¬ 𝐴 ∈ On β†’ (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄))
4132, 40pm2.61i 182 1 (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  Vcvv 3473  βˆ…c0 4322  βˆͺ ciun 4997  dom cdm 5676  Oncon0 6364  Lim wlim 6365  suc csuc 6366  β€˜cfv 6543  Ο‰com 7859  harchar 9555  cardccrd 9934  β„΅cale 9935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-oi 9509  df-har 9556  df-card 9938  df-aleph 9939
This theorem is referenced by:  alephnbtwn2  10071  alephord2  10075  alephsuc2  10079  alephislim  10082  alephsdom  10085  cardaleph  10088  cardalephex  10089  alephval3  10109  alephval2  10571  alephsuc3  10579  alephreg  10581  pwcfsdom  10582  minregex2  42589
  Copyright terms: Public domain W3C validator