| Step | Hyp | Ref
| Expression |
| 1 | | 2fveq3 6886 |
. . . 4
⊢ (𝑥 = ∅ →
(card‘(ℵ‘𝑥)) =
(card‘(ℵ‘∅))) |
| 2 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = ∅ →
(ℵ‘𝑥) =
(ℵ‘∅)) |
| 3 | 1, 2 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = ∅ →
((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘∅))
= (ℵ‘∅))) |
| 4 | | 2fveq3 6886 |
. . . 4
⊢ (𝑥 = 𝑦 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘𝑦))) |
| 5 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) |
| 6 | 4, 5 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦))) |
| 7 | | 2fveq3 6886 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘suc 𝑦))) |
| 8 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) |
| 9 | 7, 8 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = suc 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦))) |
| 10 | | 2fveq3 6886 |
. . . 4
⊢ (𝑥 = 𝐴 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘𝐴))) |
| 11 | | fveq2 6881 |
. . . 4
⊢ (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴)) |
| 12 | 10, 11 | eqeq12d 2752 |
. . 3
⊢ (𝑥 = 𝐴 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴))) |
| 13 | | cardom 10005 |
. . . 4
⊢
(card‘ω) = ω |
| 14 | | aleph0 10085 |
. . . . 5
⊢
(ℵ‘∅) = ω |
| 15 | 14 | fveq2i 6884 |
. . . 4
⊢
(card‘(ℵ‘∅)) =
(card‘ω) |
| 16 | 13, 15, 14 | 3eqtr4i 2769 |
. . 3
⊢
(card‘(ℵ‘∅)) =
(ℵ‘∅) |
| 17 | | harcard 9997 |
. . . . 5
⊢
(card‘(har‘(ℵ‘𝑦))) = (har‘(ℵ‘𝑦)) |
| 18 | | alephsuc 10087 |
. . . . . 6
⊢ (𝑦 ∈ On →
(ℵ‘suc 𝑦) =
(har‘(ℵ‘𝑦))) |
| 19 | 18 | fveq2d 6885 |
. . . . 5
⊢ (𝑦 ∈ On →
(card‘(ℵ‘suc 𝑦)) =
(card‘(har‘(ℵ‘𝑦)))) |
| 20 | 17, 19, 18 | 3eqtr4a 2797 |
. . . 4
⊢ (𝑦 ∈ On →
(card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦)) |
| 21 | 20 | a1d 25 |
. . 3
⊢ (𝑦 ∈ On →
((card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦))) |
| 22 | | cardiun 10001 |
. . . . . . 7
⊢ (𝑥 ∈ V → (∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦))) |
| 23 | 22 | elv 3469 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 24 | 23 | adantl 481 |
. . . . 5
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 25 | | vex 3468 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 26 | | alephlim 10086 |
. . . . . . . 8
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 27 | 25, 26 | mpan 690 |
. . . . . . 7
⊢ (Lim
𝑥 →
(ℵ‘𝑥) =
∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 28 | 27 | adantr 480 |
. . . . . 6
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) |
| 29 | 28 | fveq2d 6885 |
. . . . 5
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) →
(card‘(ℵ‘𝑥)) = (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦))) |
| 30 | 24, 29, 28 | 3eqtr4d 2781 |
. . . 4
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) →
(card‘(ℵ‘𝑥)) = (ℵ‘𝑥)) |
| 31 | 30 | ex 412 |
. . 3
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) →
(card‘(ℵ‘𝑥)) = (ℵ‘𝑥))) |
| 32 | 3, 6, 9, 12, 16, 21, 31 | tfinds 7860 |
. 2
⊢ (𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 33 | | card0 9977 |
. . 3
⊢
(card‘∅) = ∅ |
| 34 | | alephfnon 10084 |
. . . . . . 7
⊢ ℵ
Fn On |
| 35 | 34 | fndmi 6647 |
. . . . . 6
⊢ dom
ℵ = On |
| 36 | 35 | eleq2i 2827 |
. . . . 5
⊢ (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On) |
| 37 | | ndmfv 6916 |
. . . . 5
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) =
∅) |
| 38 | 36, 37 | sylnbir 331 |
. . . 4
⊢ (¬
𝐴 ∈ On →
(ℵ‘𝐴) =
∅) |
| 39 | 38 | fveq2d 6885 |
. . 3
⊢ (¬
𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (card‘∅)) |
| 40 | 33, 39, 38 | 3eqtr4a 2797 |
. 2
⊢ (¬
𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 41 | 32, 40 | pm2.61i 182 |
1
⊢
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴) |