| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2fveq3 6910 | . . . 4
⊢ (𝑥 = ∅ →
(card‘(ℵ‘𝑥)) =
(card‘(ℵ‘∅))) | 
| 2 |  | fveq2 6905 | . . . 4
⊢ (𝑥 = ∅ →
(ℵ‘𝑥) =
(ℵ‘∅)) | 
| 3 | 1, 2 | eqeq12d 2752 | . . 3
⊢ (𝑥 = ∅ →
((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔ (card‘(ℵ‘∅))
= (ℵ‘∅))) | 
| 4 |  | 2fveq3 6910 | . . . 4
⊢ (𝑥 = 𝑦 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘𝑦))) | 
| 5 |  | fveq2 6905 | . . . 4
⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | 
| 6 | 4, 5 | eqeq12d 2752 | . . 3
⊢ (𝑥 = 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦))) | 
| 7 |  | 2fveq3 6910 | . . . 4
⊢ (𝑥 = suc 𝑦 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘suc 𝑦))) | 
| 8 |  | fveq2 6905 | . . . 4
⊢ (𝑥 = suc 𝑦 → (ℵ‘𝑥) = (ℵ‘suc 𝑦)) | 
| 9 | 7, 8 | eqeq12d 2752 | . . 3
⊢ (𝑥 = suc 𝑦 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦))) | 
| 10 |  | 2fveq3 6910 | . . . 4
⊢ (𝑥 = 𝐴 → (card‘(ℵ‘𝑥)) =
(card‘(ℵ‘𝐴))) | 
| 11 |  | fveq2 6905 | . . . 4
⊢ (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴)) | 
| 12 | 10, 11 | eqeq12d 2752 | . . 3
⊢ (𝑥 = 𝐴 → ((card‘(ℵ‘𝑥)) = (ℵ‘𝑥) ↔
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴))) | 
| 13 |  | cardom 10027 | . . . 4
⊢
(card‘ω) = ω | 
| 14 |  | aleph0 10107 | . . . . 5
⊢
(ℵ‘∅) = ω | 
| 15 | 14 | fveq2i 6908 | . . . 4
⊢
(card‘(ℵ‘∅)) =
(card‘ω) | 
| 16 | 13, 15, 14 | 3eqtr4i 2774 | . . 3
⊢
(card‘(ℵ‘∅)) =
(ℵ‘∅) | 
| 17 |  | harcard 10019 | . . . . 5
⊢
(card‘(har‘(ℵ‘𝑦))) = (har‘(ℵ‘𝑦)) | 
| 18 |  | alephsuc 10109 | . . . . . 6
⊢ (𝑦 ∈ On →
(ℵ‘suc 𝑦) =
(har‘(ℵ‘𝑦))) | 
| 19 | 18 | fveq2d 6909 | . . . . 5
⊢ (𝑦 ∈ On →
(card‘(ℵ‘suc 𝑦)) =
(card‘(har‘(ℵ‘𝑦)))) | 
| 20 | 17, 19, 18 | 3eqtr4a 2802 | . . . 4
⊢ (𝑦 ∈ On →
(card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦)) | 
| 21 | 20 | a1d 25 | . . 3
⊢ (𝑦 ∈ On →
((card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘(ℵ‘suc 𝑦)) = (ℵ‘suc 𝑦))) | 
| 22 |  | cardiun 10023 | . . . . . . 7
⊢ (𝑥 ∈ V → (∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦))) | 
| 23 | 22 | elv 3484 | . . . . . 6
⊢
(∀𝑦 ∈
𝑥
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦)) | 
| 24 | 23 | adantl 481 | . . . . 5
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) = ∪
𝑦 ∈ 𝑥 (ℵ‘𝑦)) | 
| 25 |  | vex 3483 | . . . . . . . 8
⊢ 𝑥 ∈ V | 
| 26 |  | alephlim 10108 | . . . . . . . 8
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | 
| 27 | 25, 26 | mpan 690 | . . . . . . 7
⊢ (Lim
𝑥 →
(ℵ‘𝑥) =
∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | 
| 28 | 27 | adantr 480 | . . . . . 6
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) → (ℵ‘𝑥) = ∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦)) | 
| 29 | 28 | fveq2d 6909 | . . . . 5
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) →
(card‘(ℵ‘𝑥)) = (card‘∪ 𝑦 ∈ 𝑥 (ℵ‘𝑦))) | 
| 30 | 24, 29, 28 | 3eqtr4d 2786 | . . . 4
⊢ ((Lim
𝑥 ∧ ∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) →
(card‘(ℵ‘𝑥)) = (ℵ‘𝑥)) | 
| 31 | 30 | ex 412 | . . 3
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) →
(card‘(ℵ‘𝑥)) = (ℵ‘𝑥))) | 
| 32 | 3, 6, 9, 12, 16, 21, 31 | tfinds 7882 | . 2
⊢ (𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴)) | 
| 33 |  | card0 9999 | . . 3
⊢
(card‘∅) = ∅ | 
| 34 |  | alephfnon 10106 | . . . . . . 7
⊢ ℵ
Fn On | 
| 35 | 34 | fndmi 6671 | . . . . . 6
⊢ dom
ℵ = On | 
| 36 | 35 | eleq2i 2832 | . . . . 5
⊢ (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On) | 
| 37 |  | ndmfv 6940 | . . . . 5
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) =
∅) | 
| 38 | 36, 37 | sylnbir 331 | . . . 4
⊢ (¬
𝐴 ∈ On →
(ℵ‘𝐴) =
∅) | 
| 39 | 38 | fveq2d 6909 | . . 3
⊢ (¬
𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (card‘∅)) | 
| 40 | 33, 39, 38 | 3eqtr4a 2802 | . 2
⊢ (¬
𝐴 ∈ On →
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴)) | 
| 41 | 32, 40 | pm2.61i 182 | 1
⊢
(card‘(ℵ‘𝐴)) = (ℵ‘𝐴) |