| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfidm | Structured version Visualization version GIF version | ||
| Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cfidm | ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfle 10145 | . . . 4 ⊢ (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)) |
| 3 | cfsmo 10162 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦))) | |
| 4 | cfon 10146 | . . . . 5 ⊢ (cf‘𝐴) ∈ On | |
| 5 | cfcoflem 10163 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) | |
| 6 | 4, 5 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) |
| 7 | 3, 6 | mpd 15 | . . 3 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))) |
| 8 | 2, 7 | eqssd 3947 | . 2 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
| 9 | cf0 10142 | . . 3 ⊢ (cf‘∅) = ∅ | |
| 10 | cff 10139 | . . . . . . 7 ⊢ cf:On⟶On | |
| 11 | 10 | fdmi 6662 | . . . . . 6 ⊢ dom cf = On |
| 12 | 11 | eleq2i 2823 | . . . . 5 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
| 13 | ndmfv 6854 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
| 14 | 12, 13 | sylnbir 331 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
| 15 | 14 | fveq2d 6826 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅)) |
| 16 | 9, 15, 14 | 3eqtr4a 2792 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
| 17 | 8, 16 | pm2.61i 182 | 1 ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 ∅c0 4280 dom cdm 5614 Oncon0 6306 ⟶wf 6477 ‘cfv 6481 Smo wsmo 8265 cfccf 9830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-smo 8266 df-recs 8291 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-card 9832 df-cf 9834 df-acn 9835 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |