Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfidm | Structured version Visualization version GIF version |
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfidm | ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfle 9868 | . . . 4 ⊢ (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)) |
3 | cfsmo 9885 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦))) | |
4 | cfon 9869 | . . . . 5 ⊢ (cf‘𝐴) ∈ On | |
5 | cfcoflem 9886 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) | |
6 | 4, 5 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) |
7 | 3, 6 | mpd 15 | . . 3 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))) |
8 | 2, 7 | eqssd 3918 | . 2 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
9 | cf0 9865 | . . 3 ⊢ (cf‘∅) = ∅ | |
10 | cff 9862 | . . . . . . 7 ⊢ cf:On⟶On | |
11 | 10 | fdmi 6557 | . . . . . 6 ⊢ dom cf = On |
12 | 11 | eleq2i 2829 | . . . . 5 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
13 | ndmfv 6747 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
14 | 12, 13 | sylnbir 334 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
15 | 14 | fveq2d 6721 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅)) |
16 | 9, 15, 14 | 3eqtr4a 2804 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
17 | 8, 16 | pm2.61i 185 | 1 ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1089 = wceq 1543 ∃wex 1787 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 ∅c0 4237 dom cdm 5551 Oncon0 6213 ⟶wf 6376 ‘cfv 6380 Smo wsmo 8082 cfccf 9553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-smo 8083 df-recs 8108 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-card 9555 df-cf 9557 df-acn 9558 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |