Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfidm | Structured version Visualization version GIF version |
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfidm | ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfle 9941 | . . . 4 ⊢ (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)) |
3 | cfsmo 9958 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦))) | |
4 | cfon 9942 | . . . . 5 ⊢ (cf‘𝐴) ∈ On | |
5 | cfcoflem 9959 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) | |
6 | 4, 5 | mpan2 687 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) |
7 | 3, 6 | mpd 15 | . . 3 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))) |
8 | 2, 7 | eqssd 3934 | . 2 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
9 | cf0 9938 | . . 3 ⊢ (cf‘∅) = ∅ | |
10 | cff 9935 | . . . . . . 7 ⊢ cf:On⟶On | |
11 | 10 | fdmi 6596 | . . . . . 6 ⊢ dom cf = On |
12 | 11 | eleq2i 2830 | . . . . 5 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
13 | ndmfv 6786 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
14 | 12, 13 | sylnbir 330 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
15 | 14 | fveq2d 6760 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅)) |
16 | 9, 15, 14 | 3eqtr4a 2805 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
17 | 8, 16 | pm2.61i 182 | 1 ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 ∅c0 4253 dom cdm 5580 Oncon0 6251 ⟶wf 6414 ‘cfv 6418 Smo wsmo 8147 cfccf 9626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-smo 8148 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 df-cf 9630 df-acn 9631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |