MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfidm Structured version   Visualization version   GIF version

Theorem cfidm 10344
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfidm (cf‘(cf‘𝐴)) = (cf‘𝐴)

Proof of Theorem cfidm
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfle 10323 . . . 4 (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)
21a1i 11 . . 3 (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴))
3 cfsmo 10340 . . . 4 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)))
4 cfon 10324 . . . . 5 (cf‘𝐴) ∈ On
5 cfcoflem 10341 . . . . 5 ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))))
64, 5mpan2 690 . . . 4 (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))))
73, 6mpd 15 . . 3 (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))
82, 7eqssd 4026 . 2 (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴))
9 cf0 10320 . . 3 (cf‘∅) = ∅
10 cff 10317 . . . . . . 7 cf:On⟶On
1110fdmi 6758 . . . . . 6 dom cf = On
1211eleq2i 2836 . . . . 5 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
13 ndmfv 6955 . . . . 5 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
1412, 13sylnbir 331 . . . 4 𝐴 ∈ On → (cf‘𝐴) = ∅)
1514fveq2d 6924 . . 3 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅))
169, 15, 143eqtr4a 2806 . 2 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴))
178, 16pm2.61i 182 1 (cf‘(cf‘𝐴)) = (cf‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  wss 3976  c0 4352  dom cdm 5700  Oncon0 6395  wf 6569  cfv 6573  Smo wsmo 8401  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-smo 8402  df-recs 8427  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-card 10008  df-cf 10010  df-acn 10011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator