![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfidm | Structured version Visualization version GIF version |
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfidm | β’ (cfβ(cfβπ΄)) = (cfβπ΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfle 10251 | . . . 4 β’ (cfβ(cfβπ΄)) β (cfβπ΄) | |
2 | 1 | a1i 11 | . . 3 β’ (π΄ β On β (cfβ(cfβπ΄)) β (cfβπ΄)) |
3 | cfsmo 10268 | . . . 4 β’ (π΄ β On β βπ(π:(cfβπ΄)βΆπ΄ β§ Smo π β§ βπ₯ β π΄ βπ¦ β (cfβπ΄)π₯ β (πβπ¦))) | |
4 | cfon 10252 | . . . . 5 β’ (cfβπ΄) β On | |
5 | cfcoflem 10269 | . . . . 5 β’ ((π΄ β On β§ (cfβπ΄) β On) β (βπ(π:(cfβπ΄)βΆπ΄ β§ Smo π β§ βπ₯ β π΄ βπ¦ β (cfβπ΄)π₯ β (πβπ¦)) β (cfβπ΄) β (cfβ(cfβπ΄)))) | |
6 | 4, 5 | mpan2 689 | . . . 4 β’ (π΄ β On β (βπ(π:(cfβπ΄)βΆπ΄ β§ Smo π β§ βπ₯ β π΄ βπ¦ β (cfβπ΄)π₯ β (πβπ¦)) β (cfβπ΄) β (cfβ(cfβπ΄)))) |
7 | 3, 6 | mpd 15 | . . 3 β’ (π΄ β On β (cfβπ΄) β (cfβ(cfβπ΄))) |
8 | 2, 7 | eqssd 3999 | . 2 β’ (π΄ β On β (cfβ(cfβπ΄)) = (cfβπ΄)) |
9 | cf0 10248 | . . 3 β’ (cfββ ) = β | |
10 | cff 10245 | . . . . . . 7 β’ cf:OnβΆOn | |
11 | 10 | fdmi 6729 | . . . . . 6 β’ dom cf = On |
12 | 11 | eleq2i 2825 | . . . . 5 β’ (π΄ β dom cf β π΄ β On) |
13 | ndmfv 6926 | . . . . 5 β’ (Β¬ π΄ β dom cf β (cfβπ΄) = β ) | |
14 | 12, 13 | sylnbir 330 | . . . 4 β’ (Β¬ π΄ β On β (cfβπ΄) = β ) |
15 | 14 | fveq2d 6895 | . . 3 β’ (Β¬ π΄ β On β (cfβ(cfβπ΄)) = (cfββ )) |
16 | 9, 15, 14 | 3eqtr4a 2798 | . 2 β’ (Β¬ π΄ β On β (cfβ(cfβπ΄)) = (cfβπ΄)) |
17 | 8, 16 | pm2.61i 182 | 1 β’ (cfβ(cfβπ΄)) = (cfβπ΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ w3a 1087 = wceq 1541 βwex 1781 β wcel 2106 βwral 3061 βwrex 3070 β wss 3948 β c0 4322 dom cdm 5676 Oncon0 6364 βΆwf 6539 βcfv 6543 Smo wsmo 8347 cfccf 9934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-smo 8348 df-recs 8373 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-card 9936 df-cf 9938 df-acn 9939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |