MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfidm Structured version   Visualization version   GIF version

Theorem cfidm 9962
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfidm (cf‘(cf‘𝐴)) = (cf‘𝐴)

Proof of Theorem cfidm
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfle 9941 . . . 4 (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)
21a1i 11 . . 3 (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴))
3 cfsmo 9958 . . . 4 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)))
4 cfon 9942 . . . . 5 (cf‘𝐴) ∈ On
5 cfcoflem 9959 . . . . 5 ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))))
64, 5mpan2 687 . . . 4 (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))))
73, 6mpd 15 . . 3 (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))
82, 7eqssd 3934 . 2 (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴))
9 cf0 9938 . . 3 (cf‘∅) = ∅
10 cff 9935 . . . . . . 7 cf:On⟶On
1110fdmi 6596 . . . . . 6 dom cf = On
1211eleq2i 2830 . . . . 5 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
13 ndmfv 6786 . . . . 5 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
1412, 13sylnbir 330 . . . 4 𝐴 ∈ On → (cf‘𝐴) = ∅)
1514fveq2d 6760 . . 3 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅))
169, 15, 143eqtr4a 2805 . 2 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴))
178, 16pm2.61i 182 1 (cf‘(cf‘𝐴)) = (cf‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  wss 3883  c0 4253  dom cdm 5580  Oncon0 6251  wf 6414  cfv 6418  Smo wsmo 8147  cfccf 9626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-smo 8148  df-recs 8173  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-card 9628  df-cf 9630  df-acn 9631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator