Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfidm | Structured version Visualization version GIF version |
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
cfidm | ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfle 10115 | . . . 4 ⊢ (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)) |
3 | cfsmo 10132 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦))) | |
4 | cfon 10116 | . . . . 5 ⊢ (cf‘𝐴) ∈ On | |
5 | cfcoflem 10133 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) | |
6 | 4, 5 | mpan2 689 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) |
7 | 3, 6 | mpd 15 | . . 3 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))) |
8 | 2, 7 | eqssd 3952 | . 2 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
9 | cf0 10112 | . . 3 ⊢ (cf‘∅) = ∅ | |
10 | cff 10109 | . . . . . . 7 ⊢ cf:On⟶On | |
11 | 10 | fdmi 6667 | . . . . . 6 ⊢ dom cf = On |
12 | 11 | eleq2i 2829 | . . . . 5 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
13 | ndmfv 6864 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
14 | 12, 13 | sylnbir 331 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
15 | 14 | fveq2d 6833 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅)) |
16 | 9, 15, 14 | 3eqtr4a 2803 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
17 | 8, 16 | pm2.61i 182 | 1 ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 ⊆ wss 3901 ∅c0 4273 dom cdm 5624 Oncon0 6306 ⟶wf 6479 ‘cfv 6483 Smo wsmo 8250 cfccf 9798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-smo 8251 df-recs 8276 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-card 9800 df-cf 9802 df-acn 9803 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |