MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfidm Structured version   Visualization version   GIF version

Theorem cfidm 9494
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cfidm (cf‘(cf‘𝐴)) = (cf‘𝐴)

Proof of Theorem cfidm
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfle 9473 . . . 4 (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)
21a1i 11 . . 3 (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴))
3 cfsmo 9490 . . . 4 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)))
4 cfon 9474 . . . . 5 (cf‘𝐴) ∈ On
5 cfcoflem 9491 . . . . 5 ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))))
64, 5mpan2 679 . . . 4 (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥𝐴𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))))
73, 6mpd 15 . . 3 (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))
82, 7eqssd 3870 . 2 (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴))
9 cf0 9470 . . 3 (cf‘∅) = ∅
10 cff 9467 . . . . . . 7 cf:On⟶On
1110fdmi 6352 . . . . . 6 dom cf = On
1211eleq2i 2852 . . . . 5 (𝐴 ∈ dom cf ↔ 𝐴 ∈ On)
13 ndmfv 6527 . . . . 5 𝐴 ∈ dom cf → (cf‘𝐴) = ∅)
1412, 13sylnbir 323 . . . 4 𝐴 ∈ On → (cf‘𝐴) = ∅)
1514fveq2d 6501 . . 3 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅))
169, 15, 143eqtr4a 2835 . 2 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴))
178, 16pm2.61i 177 1 (cf‘(cf‘𝐴)) = (cf‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1069   = wceq 1508  wex 1743  wcel 2051  wral 3083  wrex 3084  wss 3824  c0 4173  dom cdm 5404  Oncon0 6027  wf 6182  cfv 6186  Smo wsmo 7785  cfccf 9159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-smo 7786  df-recs 7811  df-er 8088  df-map 8207  df-en 8306  df-dom 8307  df-sdom 8308  df-card 9161  df-cf 9163  df-acn 9164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator