| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfidm | Structured version Visualization version GIF version | ||
| Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| cfidm | ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfle 10268 | . . . 4 ⊢ (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) ⊆ (cf‘𝐴)) |
| 3 | cfsmo 10285 | . . . 4 ⊢ (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦))) | |
| 4 | cfon 10269 | . . . . 5 ⊢ (cf‘𝐴) ∈ On | |
| 5 | cfcoflem 10286 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ (cf‘𝐴) ∈ On) → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) | |
| 6 | 4, 5 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ On → (∃𝑓(𝑓:(cf‘𝐴)⟶𝐴 ∧ Smo 𝑓 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (cf‘𝐴)𝑥 ⊆ (𝑓‘𝑦)) → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴)))) |
| 7 | 3, 6 | mpd 15 | . . 3 ⊢ (𝐴 ∈ On → (cf‘𝐴) ⊆ (cf‘(cf‘𝐴))) |
| 8 | 2, 7 | eqssd 3976 | . 2 ⊢ (𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
| 9 | cf0 10265 | . . 3 ⊢ (cf‘∅) = ∅ | |
| 10 | cff 10262 | . . . . . . 7 ⊢ cf:On⟶On | |
| 11 | 10 | fdmi 6717 | . . . . . 6 ⊢ dom cf = On |
| 12 | 11 | eleq2i 2826 | . . . . 5 ⊢ (𝐴 ∈ dom cf ↔ 𝐴 ∈ On) |
| 13 | ndmfv 6911 | . . . . 5 ⊢ (¬ 𝐴 ∈ dom cf → (cf‘𝐴) = ∅) | |
| 14 | 12, 13 | sylnbir 331 | . . . 4 ⊢ (¬ 𝐴 ∈ On → (cf‘𝐴) = ∅) |
| 15 | 14 | fveq2d 6880 | . . 3 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘∅)) |
| 16 | 9, 15, 14 | 3eqtr4a 2796 | . 2 ⊢ (¬ 𝐴 ∈ On → (cf‘(cf‘𝐴)) = (cf‘𝐴)) |
| 17 | 8, 16 | pm2.61i 182 | 1 ⊢ (cf‘(cf‘𝐴)) = (cf‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ⊆ wss 3926 ∅c0 4308 dom cdm 5654 Oncon0 6352 ⟶wf 6527 ‘cfv 6531 Smo wsmo 8359 cfccf 9951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-smo 8360 df-recs 8385 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-card 9953 df-cf 9955 df-acn 9956 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |