MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumz Structured version   Visualization version   GIF version

Theorem sumz 15688
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumz ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem sumz
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 484 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simpl 482 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
4 c0ex 11168 . . . . . . . 8 0 ∈ V
54fvconst2 7178 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
6 ifid 4529 . . . . . . 7 if(𝑘𝐴, 0, 0) = 0
75, 6eqtr4di 2782 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
87adantl 481 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
9 0cnd 11167 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 0 ∈ ℂ)
101, 2, 3, 8, 9zsum 15684 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))))
11 fclim 15519 . . . . . 6 ⇝ :dom ⇝ ⟶ℂ
12 ffun 6691 . . . . . 6 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
1311, 12ax-mp 5 . . . . 5 Fun ⇝
14 serclim0 15543 . . . . . 6 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
1514adantl 481 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
16 funbrfv 6909 . . . . 5 (Fun ⇝ → (seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0))
1713, 15, 16mpsyl 68 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0)
1810, 17eqtrd 2764 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
19 uzf 12796 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
2019fdmi 6699 . . . . . . . 8 dom ℤ = ℤ
2120eleq2i 2820 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
22 ndmfv 6893 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
2321, 22sylnbir 331 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2423sseq2d 3979 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2524biimpac 478 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
26 ss0 4365 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
27 sumeq1 15655 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 0 = Σ𝑘 ∈ ∅ 0)
28 sum0 15687 . . . . 5 Σ𝑘 ∈ ∅ 0 = 0
2927, 28eqtrdi 2780 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 0 = 0)
3025, 26, 293syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
3118, 30pm2.61dan 812 . 2 (𝐴 ⊆ (ℤ𝑀) → Σ𝑘𝐴 0 = 0)
32 fz1f1o 15676 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
33 eqidd 2730 . . . . . . . . 9 (𝑘 = (𝑓𝑛) → 0 = 0)
34 simpl 482 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
35 simpr 484 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
36 0cnd 11167 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
37 elfznn 13514 . . . . . . . . . . 11 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
384fvconst2 7178 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3937, 38syl 17 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → ((ℕ × {0})‘𝑛) = 0)
4039adantl 481 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {0})‘𝑛) = 0)
4133, 34, 35, 36, 40fsum 15686 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = (seq1( + , (ℕ × {0}))‘(♯‘𝐴)))
42 nnuz 12836 . . . . . . . . . 10 ℕ = (ℤ‘1)
4342ser0 14019 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4443adantr 480 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4541, 44eqtrd 2764 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4645ex 412 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4746exlimdv 1933 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4847imp 406 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4929, 48jaoi 857 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 0 = 0)
5032, 49syl 17 . 2 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
5131, 50jaoi 857 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  {csn 4589   class class class wbr 5107   × cxp 5636  dom cdm 5638  Fun wfun 6505  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cn 12186  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  chash 14295  cli 15450  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  fsum00  15764  fsumdvds  16278  pwp1fsum  16361  pcfac  16870  ovoliunnul  25408  vitalilem5  25513  itg1addlem5  25601  itg10a  25611  itg0  25681  itgz  25682  plymullem1  26119  coemullem  26155  logtayl  26569  ftalem5  26987  chp1  27077  logexprlim  27136  bposlem2  27196  rpvmasumlem  27398  axcgrid  28843  axlowdimlem16  28884  indsumin  32785  elrgspnlem2  33194  plymulx0  34538  signsplypnf  34541  fsum2dsub  34598  knoppndvlem6  36505  volsupnfl  37659  binomcxplemnn0  44338  binomcxplemnotnn0  44345  sumnnodd  45628  stoweidlem37  46035  fourierdlem103  46207  fourierdlem104  46208  etransclem24  46256  etransclem32  46264  etransclem35  46267  sge0z  46373  aacllem  49790
  Copyright terms: Public domain W3C validator