MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumz Structured version   Visualization version   GIF version

Theorem sumz 15695
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumz ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem sumz
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 484 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simpl 482 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
4 c0ex 11175 . . . . . . . 8 0 ∈ V
54fvconst2 7181 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
6 ifid 4532 . . . . . . 7 if(𝑘𝐴, 0, 0) = 0
75, 6eqtr4di 2783 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
87adantl 481 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
9 0cnd 11174 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 0 ∈ ℂ)
101, 2, 3, 8, 9zsum 15691 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))))
11 fclim 15526 . . . . . 6 ⇝ :dom ⇝ ⟶ℂ
12 ffun 6694 . . . . . 6 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
1311, 12ax-mp 5 . . . . 5 Fun ⇝
14 serclim0 15550 . . . . . 6 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
1514adantl 481 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
16 funbrfv 6912 . . . . 5 (Fun ⇝ → (seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0))
1713, 15, 16mpsyl 68 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0)
1810, 17eqtrd 2765 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
19 uzf 12803 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
2019fdmi 6702 . . . . . . . 8 dom ℤ = ℤ
2120eleq2i 2821 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
22 ndmfv 6896 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
2321, 22sylnbir 331 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2423sseq2d 3982 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2524biimpac 478 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
26 ss0 4368 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
27 sumeq1 15662 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 0 = Σ𝑘 ∈ ∅ 0)
28 sum0 15694 . . . . 5 Σ𝑘 ∈ ∅ 0 = 0
2927, 28eqtrdi 2781 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 0 = 0)
3025, 26, 293syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
3118, 30pm2.61dan 812 . 2 (𝐴 ⊆ (ℤ𝑀) → Σ𝑘𝐴 0 = 0)
32 fz1f1o 15683 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
33 eqidd 2731 . . . . . . . . 9 (𝑘 = (𝑓𝑛) → 0 = 0)
34 simpl 482 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
35 simpr 484 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
36 0cnd 11174 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
37 elfznn 13521 . . . . . . . . . . 11 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
384fvconst2 7181 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3937, 38syl 17 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → ((ℕ × {0})‘𝑛) = 0)
4039adantl 481 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {0})‘𝑛) = 0)
4133, 34, 35, 36, 40fsum 15693 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = (seq1( + , (ℕ × {0}))‘(♯‘𝐴)))
42 nnuz 12843 . . . . . . . . . 10 ℕ = (ℤ‘1)
4342ser0 14026 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4443adantr 480 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4541, 44eqtrd 2765 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4645ex 412 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4746exlimdv 1933 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4847imp 406 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4929, 48jaoi 857 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 0 = 0)
5032, 49syl 17 . 2 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
5131, 50jaoi 857 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wss 3917  c0 4299  ifcif 4491  𝒫 cpw 4566  {csn 4592   class class class wbr 5110   × cxp 5639  dom cdm 5641  Fun wfun 6508  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   + caddc 11078  cn 12193  cz 12536  cuz 12800  ...cfz 13475  seqcseq 13973  chash 14302  cli 15457  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660
This theorem is referenced by:  fsum00  15771  fsumdvds  16285  pwp1fsum  16368  pcfac  16877  ovoliunnul  25415  vitalilem5  25520  itg1addlem5  25608  itg10a  25618  itg0  25688  itgz  25689  plymullem1  26126  coemullem  26162  logtayl  26576  ftalem5  26994  chp1  27084  logexprlim  27143  bposlem2  27203  rpvmasumlem  27405  axcgrid  28850  axlowdimlem16  28891  indsumin  32792  elrgspnlem2  33201  plymulx0  34545  signsplypnf  34548  fsum2dsub  34605  knoppndvlem6  36512  volsupnfl  37666  binomcxplemnn0  44345  binomcxplemnotnn0  44352  sumnnodd  45635  stoweidlem37  46042  fourierdlem103  46214  fourierdlem104  46215  etransclem24  46263  etransclem32  46271  etransclem35  46274  sge0z  46380  aacllem  49794
  Copyright terms: Public domain W3C validator