MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumz Structured version   Visualization version   GIF version

Theorem sumz 14837
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumz ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem sumz
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 479 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simpl 476 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
4 c0ex 10357 . . . . . . . 8 0 ∈ V
54fvconst2 6730 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
6 ifid 4347 . . . . . . 7 if(𝑘𝐴, 0, 0) = 0
75, 6syl6eqr 2879 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
87adantl 475 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
9 0cnd 10356 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 0 ∈ ℂ)
101, 2, 3, 8, 9zsum 14833 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))))
11 fclim 14668 . . . . . 6 ⇝ :dom ⇝ ⟶ℂ
12 ffun 6285 . . . . . 6 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
1311, 12ax-mp 5 . . . . 5 Fun ⇝
14 serclim0 14692 . . . . . 6 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
1514adantl 475 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
16 funbrfv 6484 . . . . 5 (Fun ⇝ → (seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0))
1713, 15, 16mpsyl 68 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0)
1810, 17eqtrd 2861 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
19 uzf 11978 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
2019fdmi 6292 . . . . . . . 8 dom ℤ = ℤ
2120eleq2i 2898 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
22 ndmfv 6467 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
2321, 22sylnbir 323 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2423sseq2d 3858 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2524biimpac 472 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
26 ss0 4201 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
27 sumeq1 14803 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 0 = Σ𝑘 ∈ ∅ 0)
28 sum0 14836 . . . . 5 Σ𝑘 ∈ ∅ 0 = 0
2927, 28syl6eq 2877 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 0 = 0)
3025, 26, 293syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
3118, 30pm2.61dan 847 . 2 (𝐴 ⊆ (ℤ𝑀) → Σ𝑘𝐴 0 = 0)
32 fz1f1o 14825 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
33 eqidd 2826 . . . . . . . . 9 (𝑘 = (𝑓𝑛) → 0 = 0)
34 simpl 476 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
35 simpr 479 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
36 0cnd 10356 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
37 elfznn 12670 . . . . . . . . . . 11 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
384fvconst2 6730 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3937, 38syl 17 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → ((ℕ × {0})‘𝑛) = 0)
4039adantl 475 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {0})‘𝑛) = 0)
4133, 34, 35, 36, 40fsum 14835 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = (seq1( + , (ℕ × {0}))‘(♯‘𝐴)))
42 nnuz 12012 . . . . . . . . . 10 ℕ = (ℤ‘1)
4342ser0 13154 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4443adantr 474 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4541, 44eqtrd 2861 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4645ex 403 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4746exlimdv 2032 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4847imp 397 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4929, 48jaoi 888 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 0 = 0)
5032, 49syl 17 . 2 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
5131, 50jaoi 888 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wo 878   = wceq 1656  wex 1878  wcel 2164  wss 3798  c0 4146  ifcif 4308  𝒫 cpw 4380  {csn 4399   class class class wbr 4875   × cxp 5344  dom cdm 5346  Fun wfun 6121  wf 6123  1-1-ontowf1o 6126  cfv 6127  (class class class)co 6910  Fincfn 8228  cc 10257  0cc0 10259  1c1 10260   + caddc 10262  cn 11357  cz 11711  cuz 11975  ...cfz 12626  seqcseq 13102  chash 13417  cli 14599  Σcsu 14800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-n0 11626  df-z 11712  df-uz 11976  df-rp 12120  df-fz 12627  df-fzo 12768  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801
This theorem is referenced by:  fsum00  14911  fsumdvds  15414  pwp1fsum  15495  pcfac  15981  ovoliunnul  23680  vitalilem5  23785  itg1addlem5  23873  itg10a  23883  itg0  23952  itgz  23953  plymullem1  24376  coemullem  24412  logtayl  24812  ftalem5  25223  chp1  25313  logexprlim  25370  bposlem2  25430  rpvmasumlem  25596  axcgrid  26222  axlowdimlem16  26263  indsumin  30625  plymulx0  31167  signsplypnf  31170  fsum2dsub  31230  knoppndvlem6  33035  volsupnfl  33993  binomcxplemnn0  39383  binomcxplemnotnn0  39390  sumnnodd  40651  stoweidlem37  41042  fourierdlem103  41214  fourierdlem104  41215  etransclem24  41263  etransclem32  41271  etransclem35  41274  sge0z  41377  aacllem  43453
  Copyright terms: Public domain W3C validator