MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumz Structured version   Visualization version   GIF version

Theorem sumz 15770
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Assertion
Ref Expression
sumz ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑀

Proof of Theorem sumz
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (ℤ𝑀) = (ℤ𝑀)
2 simpr 484 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
3 simpl 482 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ𝑀))
4 c0ex 11284 . . . . . . . 8 0 ∈ V
54fvconst2 7241 . . . . . . 7 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = 0)
6 ifid 4588 . . . . . . 7 if(𝑘𝐴, 0, 0) = 0
75, 6eqtr4di 2798 . . . . . 6 (𝑘 ∈ (ℤ𝑀) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
87adantl 481 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ𝑀)) → (((ℤ𝑀) × {0})‘𝑘) = if(𝑘𝐴, 0, 0))
9 0cnd 11283 . . . . 5 (((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘𝐴) → 0 ∈ ℂ)
101, 2, 3, 8, 9zsum 15766 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))))
11 fclim 15599 . . . . . 6 ⇝ :dom ⇝ ⟶ℂ
12 ffun 6750 . . . . . 6 ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ )
1311, 12ax-mp 5 . . . . 5 Fun ⇝
14 serclim0 15623 . . . . . 6 (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
1514adantl 481 . . . . 5 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
16 funbrfv 6971 . . . . 5 (Fun ⇝ → (seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0))
1713, 15, 16mpsyl 68 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → ( ⇝ ‘seq𝑀( + , ((ℤ𝑀) × {0}))) = 0)
1810, 17eqtrd 2780 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
19 uzf 12906 . . . . . . . . 9 :ℤ⟶𝒫 ℤ
2019fdmi 6758 . . . . . . . 8 dom ℤ = ℤ
2120eleq2i 2836 . . . . . . 7 (𝑀 ∈ dom ℤ𝑀 ∈ ℤ)
22 ndmfv 6955 . . . . . . 7 𝑀 ∈ dom ℤ → (ℤ𝑀) = ∅)
2321, 22sylnbir 331 . . . . . 6 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
2423sseq2d 4041 . . . . 5 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ𝑀) ↔ 𝐴 ⊆ ∅))
2524biimpac 478 . . . 4 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅)
26 ss0 4425 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
27 sumeq1 15737 . . . . 5 (𝐴 = ∅ → Σ𝑘𝐴 0 = Σ𝑘 ∈ ∅ 0)
28 sum0 15769 . . . . 5 Σ𝑘 ∈ ∅ 0 = 0
2927, 28eqtrdi 2796 . . . 4 (𝐴 = ∅ → Σ𝑘𝐴 0 = 0)
3025, 26, 293syl 18 . . 3 ((𝐴 ⊆ (ℤ𝑀) ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘𝐴 0 = 0)
3118, 30pm2.61dan 812 . 2 (𝐴 ⊆ (ℤ𝑀) → Σ𝑘𝐴 0 = 0)
32 fz1f1o 15758 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
33 eqidd 2741 . . . . . . . . 9 (𝑘 = (𝑓𝑛) → 0 = 0)
34 simpl 482 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (♯‘𝐴) ∈ ℕ)
35 simpr 484 . . . . . . . . 9 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
36 0cnd 11283 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑘𝐴) → 0 ∈ ℂ)
37 elfznn 13613 . . . . . . . . . . 11 (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ)
384fvconst2 7241 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3937, 38syl 17 . . . . . . . . . 10 (𝑛 ∈ (1...(♯‘𝐴)) → ((ℕ × {0})‘𝑛) = 0)
4039adantl 481 . . . . . . . . 9 ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {0})‘𝑛) = 0)
4133, 34, 35, 36, 40fsum 15768 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = (seq1( + , (ℕ × {0}))‘(♯‘𝐴)))
42 nnuz 12946 . . . . . . . . . 10 ℕ = (ℤ‘1)
4342ser0 14105 . . . . . . . . 9 ((♯‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4443adantr 480 . . . . . . . 8 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0)
4541, 44eqtrd 2780 . . . . . . 7 (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4645ex 412 . . . . . 6 ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4746exlimdv 1932 . . . . 5 ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 0 = 0))
4847imp 406 . . . 4 (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 0 = 0)
4929, 48jaoi 856 . . 3 ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 0 = 0)
5032, 49syl 17 . 2 (𝐴 ∈ Fin → Σ𝑘𝐴 0 = 0)
5131, 50jaoi 856 1 ((𝐴 ⊆ (ℤ𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wex 1777  wcel 2108  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648   class class class wbr 5166   × cxp 5698  dom cdm 5700  Fun wfun 6567  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cn 12293  cz 12639  cuz 12903  ...cfz 13567  seqcseq 14052  chash 14379  cli 15530  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  fsum00  15846  fsumdvds  16356  pwp1fsum  16439  pcfac  16946  ovoliunnul  25561  vitalilem5  25666  itg1addlem5  25755  itg10a  25765  itg0  25835  itgz  25836  plymullem1  26273  coemullem  26309  logtayl  26720  ftalem5  27138  chp1  27228  logexprlim  27287  bposlem2  27347  rpvmasumlem  27549  axcgrid  28949  axlowdimlem16  28990  indsumin  33986  plymulx0  34524  signsplypnf  34527  fsum2dsub  34584  knoppndvlem6  36483  volsupnfl  37625  binomcxplemnn0  44318  binomcxplemnotnn0  44325  sumnnodd  45551  stoweidlem37  45958  fourierdlem103  46130  fourierdlem104  46131  etransclem24  46179  etransclem32  46187  etransclem35  46190  sge0z  46296  aacllem  48895
  Copyright terms: Public domain W3C validator