Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sumz | Structured version Visualization version GIF version |
Description: Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.) |
Ref | Expression |
---|---|
sumz | ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | simpr 484 | . . . . 5 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
3 | simpl 482 | . . . . 5 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → 𝐴 ⊆ (ℤ≥‘𝑀)) | |
4 | c0ex 10900 | . . . . . . . 8 ⊢ 0 ∈ V | |
5 | 4 | fvconst2 7061 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (((ℤ≥‘𝑀) × {0})‘𝑘) = 0) |
6 | ifid 4496 | . . . . . . 7 ⊢ if(𝑘 ∈ 𝐴, 0, 0) = 0 | |
7 | 5, 6 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (((ℤ≥‘𝑀) × {0})‘𝑘) = if(𝑘 ∈ 𝐴, 0, 0)) |
8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐴 ⊆ (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (((ℤ≥‘𝑀) × {0})‘𝑘) = if(𝑘 ∈ 𝐴, 0, 0)) |
9 | 0cnd 10899 | . . . . 5 ⊢ (((𝐴 ⊆ (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) ∧ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) | |
10 | 1, 2, 3, 8, 9 | zsum 15358 | . . . 4 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘 ∈ 𝐴 0 = ( ⇝ ‘seq𝑀( + , ((ℤ≥‘𝑀) × {0})))) |
11 | fclim 15190 | . . . . . 6 ⊢ ⇝ :dom ⇝ ⟶ℂ | |
12 | ffun 6587 | . . . . . 6 ⊢ ( ⇝ :dom ⇝ ⟶ℂ → Fun ⇝ ) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ Fun ⇝ |
14 | serclim0 15214 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝ 0) | |
15 | 14 | adantl 481 | . . . . 5 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝ 0) |
16 | funbrfv 6802 | . . . . 5 ⊢ (Fun ⇝ → (seq𝑀( + , ((ℤ≥‘𝑀) × {0})) ⇝ 0 → ( ⇝ ‘seq𝑀( + , ((ℤ≥‘𝑀) × {0}))) = 0)) | |
17 | 13, 15, 16 | mpsyl 68 | . . . 4 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → ( ⇝ ‘seq𝑀( + , ((ℤ≥‘𝑀) × {0}))) = 0) |
18 | 10, 17 | eqtrd 2778 | . . 3 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ 𝑀 ∈ ℤ) → Σ𝑘 ∈ 𝐴 0 = 0) |
19 | uzf 12514 | . . . . . . . . 9 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
20 | 19 | fdmi 6596 | . . . . . . . 8 ⊢ dom ℤ≥ = ℤ |
21 | 20 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑀 ∈ dom ℤ≥ ↔ 𝑀 ∈ ℤ) |
22 | ndmfv 6786 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ dom ℤ≥ → (ℤ≥‘𝑀) = ∅) | |
23 | 21, 22 | sylnbir 330 | . . . . . 6 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) |
24 | 23 | sseq2d 3949 | . . . . 5 ⊢ (¬ 𝑀 ∈ ℤ → (𝐴 ⊆ (ℤ≥‘𝑀) ↔ 𝐴 ⊆ ∅)) |
25 | 24 | biimpac 478 | . . . 4 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ ¬ 𝑀 ∈ ℤ) → 𝐴 ⊆ ∅) |
26 | ss0 4329 | . . . 4 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
27 | sumeq1 15328 | . . . . 5 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 0 = Σ𝑘 ∈ ∅ 0) | |
28 | sum0 15361 | . . . . 5 ⊢ Σ𝑘 ∈ ∅ 0 = 0 | |
29 | 27, 28 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 = ∅ → Σ𝑘 ∈ 𝐴 0 = 0) |
30 | 25, 26, 29 | 3syl 18 | . . 3 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∧ ¬ 𝑀 ∈ ℤ) → Σ𝑘 ∈ 𝐴 0 = 0) |
31 | 18, 30 | pm2.61dan 809 | . 2 ⊢ (𝐴 ⊆ (ℤ≥‘𝑀) → Σ𝑘 ∈ 𝐴 0 = 0) |
32 | fz1f1o 15350 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴))) | |
33 | eqidd 2739 | . . . . . . . . 9 ⊢ (𝑘 = (𝑓‘𝑛) → 0 = 0) | |
34 | simpl 482 | . . . . . . . . 9 ⊢ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (♯‘𝐴) ∈ ℕ) | |
35 | simpr 484 | . . . . . . . . 9 ⊢ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) | |
36 | 0cnd 10899 | . . . . . . . . 9 ⊢ ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) | |
37 | elfznn 13214 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ (1...(♯‘𝐴)) → 𝑛 ∈ ℕ) | |
38 | 4 | fvconst2 7061 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0) |
39 | 37, 38 | syl 17 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (1...(♯‘𝐴)) → ((ℕ × {0})‘𝑛) = 0) |
40 | 39 | adantl 481 | . . . . . . . . 9 ⊢ ((((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) ∧ 𝑛 ∈ (1...(♯‘𝐴))) → ((ℕ × {0})‘𝑛) = 0) |
41 | 33, 34, 35, 36, 40 | fsum 15360 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 0 = (seq1( + , (ℕ × {0}))‘(♯‘𝐴))) |
42 | nnuz 12550 | . . . . . . . . . 10 ⊢ ℕ = (ℤ≥‘1) | |
43 | 42 | ser0 13703 | . . . . . . . . 9 ⊢ ((♯‘𝐴) ∈ ℕ → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0) |
44 | 43 | adantr 480 | . . . . . . . 8 ⊢ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → (seq1( + , (ℕ × {0}))‘(♯‘𝐴)) = 0) |
45 | 41, 44 | eqtrd 2778 | . . . . . . 7 ⊢ (((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 0 = 0) |
46 | 45 | ex 412 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ → (𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 0 = 0)) |
47 | 46 | exlimdv 1937 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴 → Σ𝑘 ∈ 𝐴 0 = 0)) |
48 | 47 | imp 406 | . . . 4 ⊢ (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴) → Σ𝑘 ∈ 𝐴 0 = 0) |
49 | 29, 48 | jaoi 853 | . . 3 ⊢ ((𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto→𝐴)) → Σ𝑘 ∈ 𝐴 0 = 0) |
50 | 32, 49 | syl 17 | . 2 ⊢ (𝐴 ∈ Fin → Σ𝑘 ∈ 𝐴 0 = 0) |
51 | 31, 50 | jaoi 853 | 1 ⊢ ((𝐴 ⊆ (ℤ≥‘𝑀) ∨ 𝐴 ∈ Fin) → Σ𝑘 ∈ 𝐴 0 = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 ifcif 4456 𝒫 cpw 4530 {csn 4558 class class class wbr 5070 × cxp 5578 dom cdm 5580 Fun wfun 6412 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 ℕcn 11903 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 seqcseq 13649 ♯chash 13972 ⇝ cli 15121 Σcsu 15325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: fsum00 15438 fsumdvds 15945 pwp1fsum 16028 pcfac 16528 ovoliunnul 24576 vitalilem5 24681 itg1addlem5 24770 itg10a 24780 itg0 24849 itgz 24850 plymullem1 25280 coemullem 25316 logtayl 25720 ftalem5 26131 chp1 26221 logexprlim 26278 bposlem2 26338 rpvmasumlem 26540 axcgrid 27187 axlowdimlem16 27228 indsumin 31890 plymulx0 32426 signsplypnf 32429 fsum2dsub 32487 knoppndvlem6 34624 volsupnfl 35749 binomcxplemnn0 41856 binomcxplemnotnn0 41863 sumnnodd 43061 stoweidlem37 43468 fourierdlem103 43640 fourierdlem104 43641 etransclem24 43689 etransclem32 43697 etransclem35 43700 sge0z 43803 aacllem 46391 |
Copyright terms: Public domain | W3C validator |