MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriom Structured version   Visualization version   GIF version

Theorem domtriom 10334
Description: Trichotomy of equinumerosity for ω, proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 10205) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.)
Hypothesis
Ref Expression
domtriom.1 𝐴 ∈ V
Assertion
Ref Expression
domtriom (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)

Proof of Theorem domtriom
Dummy variables 𝑏 𝑛 𝑦 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 9016 . 2 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
2 isfinite 9542 . . 3 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
3 domtriom.1 . . . 4 𝐴 ∈ V
4 eqid 2731 . . . 4 {𝑦 ∣ (𝑦𝐴𝑦 ≈ 𝒫 𝑛)} = {𝑦 ∣ (𝑦𝐴𝑦 ≈ 𝒫 𝑛)}
5 fveq2 6822 . . . . . 6 (𝑚 = 𝑛 → (𝑏𝑚) = (𝑏𝑛))
6 fveq2 6822 . . . . . . . 8 (𝑗 = 𝑘 → (𝑏𝑗) = (𝑏𝑘))
76cbviunv 4987 . . . . . . 7 𝑗𝑚 (𝑏𝑗) = 𝑘𝑚 (𝑏𝑘)
8 iuneq1 4956 . . . . . . 7 (𝑚 = 𝑛 𝑘𝑚 (𝑏𝑘) = 𝑘𝑛 (𝑏𝑘))
97, 8eqtrid 2778 . . . . . 6 (𝑚 = 𝑛 𝑗𝑚 (𝑏𝑗) = 𝑘𝑛 (𝑏𝑘))
105, 9difeq12d 4074 . . . . 5 (𝑚 = 𝑛 → ((𝑏𝑚) ∖ 𝑗𝑚 (𝑏𝑗)) = ((𝑏𝑛) ∖ 𝑘𝑛 (𝑏𝑘)))
1110cbvmptv 5193 . . . 4 (𝑚 ∈ ω ↦ ((𝑏𝑚) ∖ 𝑗𝑚 (𝑏𝑗))) = (𝑛 ∈ ω ↦ ((𝑏𝑛) ∖ 𝑘𝑛 (𝑏𝑘)))
123, 4, 11domtriomlem 10333 . . 3 𝐴 ∈ Fin → ω ≼ 𝐴)
132, 12sylnbir 331 . 2 𝐴 ≺ ω → ω ≼ 𝐴)
141, 13impbii 209 1 (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2111  {cab 2709  Vcvv 3436  cdif 3894  wss 3897  𝒫 cpw 4547   ciun 4939   class class class wbr 5089  cmpt 5170  cfv 6481  ωcom 7796  cen 8866  cdom 8867  csdm 8868  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832
This theorem is referenced by:  fin41  10335  dominf  10336
  Copyright terms: Public domain W3C validator