Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domtriom | Structured version Visualization version GIF version |
Description: Trichotomy of equinumerosity for ω, proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 10070) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
domtriom.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
domtriom | ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 8886 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω) | |
2 | isfinite 9410 | . . 3 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
3 | domtriom.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | eqid 2738 | . . . 4 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} = {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} | |
5 | fveq2 6774 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑏‘𝑚) = (𝑏‘𝑛)) | |
6 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
7 | 6 | cbviunv 4970 | . . . . . . 7 ⊢ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) |
8 | iuneq1 4940 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) | |
9 | 7, 8 | eqtrid 2790 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) |
10 | 5, 9 | difeq12d 4058 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗)) = ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
11 | 10 | cbvmptv 5187 | . . . 4 ⊢ (𝑚 ∈ ω ↦ ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗))) = (𝑛 ∈ ω ↦ ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
12 | 3, 4, 11 | domtriomlem 10198 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ω ≼ 𝐴) |
13 | 2, 12 | sylnbir 331 | . 2 ⊢ (¬ 𝐴 ≺ ω → ω ≼ 𝐴) |
14 | 1, 13 | impbii 208 | 1 ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 {cab 2715 Vcvv 3432 ∖ cdif 3884 ⊆ wss 3887 𝒫 cpw 4533 ∪ ciun 4924 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 ωcom 7712 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cc 10191 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 |
This theorem is referenced by: fin41 10200 dominf 10201 |
Copyright terms: Public domain | W3C validator |