MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriom Structured version   Visualization version   GIF version

Theorem domtriom 10457
Description: Trichotomy of equinumerosity for ω, proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 10328) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.)
Hypothesis
Ref Expression
domtriom.1 𝐴 ∈ V
Assertion
Ref Expression
domtriom (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)

Proof of Theorem domtriom
Dummy variables 𝑏 𝑛 𝑦 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 9113 . 2 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
2 isfinite 9666 . . 3 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
3 domtriom.1 . . . 4 𝐴 ∈ V
4 eqid 2735 . . . 4 {𝑦 ∣ (𝑦𝐴𝑦 ≈ 𝒫 𝑛)} = {𝑦 ∣ (𝑦𝐴𝑦 ≈ 𝒫 𝑛)}
5 fveq2 6876 . . . . . 6 (𝑚 = 𝑛 → (𝑏𝑚) = (𝑏𝑛))
6 fveq2 6876 . . . . . . . 8 (𝑗 = 𝑘 → (𝑏𝑗) = (𝑏𝑘))
76cbviunv 5016 . . . . . . 7 𝑗𝑚 (𝑏𝑗) = 𝑘𝑚 (𝑏𝑘)
8 iuneq1 4984 . . . . . . 7 (𝑚 = 𝑛 𝑘𝑚 (𝑏𝑘) = 𝑘𝑛 (𝑏𝑘))
97, 8eqtrid 2782 . . . . . 6 (𝑚 = 𝑛 𝑗𝑚 (𝑏𝑗) = 𝑘𝑛 (𝑏𝑘))
105, 9difeq12d 4102 . . . . 5 (𝑚 = 𝑛 → ((𝑏𝑚) ∖ 𝑗𝑚 (𝑏𝑗)) = ((𝑏𝑛) ∖ 𝑘𝑛 (𝑏𝑘)))
1110cbvmptv 5225 . . . 4 (𝑚 ∈ ω ↦ ((𝑏𝑚) ∖ 𝑗𝑚 (𝑏𝑗))) = (𝑛 ∈ ω ↦ ((𝑏𝑛) ∖ 𝑘𝑛 (𝑏𝑘)))
123, 4, 11domtriomlem 10456 . . 3 𝐴 ∈ Fin → ω ≼ 𝐴)
132, 12sylnbir 331 . 2 𝐴 ≺ ω → ω ≼ 𝐴)
141, 13impbii 209 1 (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2108  {cab 2713  Vcvv 3459  cdif 3923  wss 3926  𝒫 cpw 4575   ciun 4967   class class class wbr 5119  cmpt 5201  cfv 6531  ωcom 7861  cen 8956  cdom 8957  csdm 8958  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953
This theorem is referenced by:  fin41  10458  dominf  10459
  Copyright terms: Public domain W3C validator