Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domtriom | Structured version Visualization version GIF version |
Description: Trichotomy of equinumerosity for ω, proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 10001) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
domtriom.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
domtriom | ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 8839 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω) | |
2 | isfinite 9340 | . . 3 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
3 | domtriom.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | eqid 2738 | . . . 4 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} = {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} | |
5 | fveq2 6756 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑏‘𝑚) = (𝑏‘𝑛)) | |
6 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
7 | 6 | cbviunv 4966 | . . . . . . 7 ⊢ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) |
8 | iuneq1 4937 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) | |
9 | 7, 8 | eqtrid 2790 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) |
10 | 5, 9 | difeq12d 4054 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗)) = ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
11 | 10 | cbvmptv 5183 | . . . 4 ⊢ (𝑚 ∈ ω ↦ ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗))) = (𝑛 ∈ ω ↦ ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
12 | 3, 4, 11 | domtriomlem 10129 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ω ≼ 𝐴) |
13 | 2, 12 | sylnbir 330 | . 2 ⊢ (¬ 𝐴 ≺ ω → ω ≼ 𝐴) |
14 | 1, 13 | impbii 208 | 1 ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 {cab 2715 Vcvv 3422 ∖ cdif 3880 ⊆ wss 3883 𝒫 cpw 4530 ∪ ciun 4921 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 |
This theorem is referenced by: fin41 10131 dominf 10132 |
Copyright terms: Public domain | W3C validator |