![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domtriom | Structured version Visualization version GIF version |
Description: Trichotomy of equinumerosity for ω, proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 9534) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.) |
Ref | Expression |
---|---|
domtriom.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
domtriom | ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domnsym 8439 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω) | |
2 | isfinite 8909 | . . 3 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
3 | domtriom.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | eqid 2778 | . . . 4 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} = {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} | |
5 | fveq2 6499 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑏‘𝑚) = (𝑏‘𝑛)) | |
6 | fveq2 6499 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
7 | 6 | cbviunv 4833 | . . . . . . 7 ⊢ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) |
8 | iuneq1 4807 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) | |
9 | 7, 8 | syl5eq 2826 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) |
10 | 5, 9 | difeq12d 3990 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗)) = ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
11 | 10 | cbvmptv 5028 | . . . 4 ⊢ (𝑚 ∈ ω ↦ ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗))) = (𝑛 ∈ ω ↦ ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
12 | 3, 4, 11 | domtriomlem 9662 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ω ≼ 𝐴) |
13 | 2, 12 | sylnbir 323 | . 2 ⊢ (¬ 𝐴 ≺ ω → ω ≼ 𝐴) |
14 | 1, 13 | impbii 201 | 1 ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 387 ∈ wcel 2050 {cab 2758 Vcvv 3415 ∖ cdif 3826 ⊆ wss 3829 𝒫 cpw 4422 ∪ ciun 4792 class class class wbr 4929 ↦ cmpt 5008 ‘cfv 6188 ωcom 7396 ≈ cen 8303 ≼ cdom 8304 ≺ csdm 8305 Fincfn 8306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-inf2 8898 ax-cc 9655 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-dju 9124 df-card 9162 |
This theorem is referenced by: fin41 9664 dominf 9665 |
Copyright terms: Public domain | W3C validator |