| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtriom | Structured version Visualization version GIF version | ||
| Description: Trichotomy of equinumerosity for ω, proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 10205) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| domtriom.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| domtriom | ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym 9016 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω) | |
| 2 | isfinite 9542 | . . 3 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
| 3 | domtriom.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | eqid 2731 | . . . 4 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} = {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} | |
| 5 | fveq2 6822 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑏‘𝑚) = (𝑏‘𝑛)) | |
| 6 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
| 7 | 6 | cbviunv 4987 | . . . . . . 7 ⊢ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) |
| 8 | iuneq1 4956 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) | |
| 9 | 7, 8 | eqtrid 2778 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) |
| 10 | 5, 9 | difeq12d 4074 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗)) = ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
| 11 | 10 | cbvmptv 5193 | . . . 4 ⊢ (𝑚 ∈ ω ↦ ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗))) = (𝑛 ∈ ω ↦ ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
| 12 | 3, 4, 11 | domtriomlem 10333 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ω ≼ 𝐴) |
| 13 | 2, 12 | sylnbir 331 | . 2 ⊢ (¬ 𝐴 ≺ ω → ω ≼ 𝐴) |
| 14 | 1, 13 | impbii 209 | 1 ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 𝒫 cpw 4547 ∪ ciun 4939 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cc 10326 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 |
| This theorem is referenced by: fin41 10335 dominf 10336 |
| Copyright terms: Public domain | W3C validator |