| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domtriom | Structured version Visualization version GIF version | ||
| Description: Trichotomy of equinumerosity for ω, proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 10267) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| domtriom.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| domtriom | ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnsym 9067 | . 2 ⊢ (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω) | |
| 2 | isfinite 9605 | . . 3 ⊢ (𝐴 ∈ Fin ↔ 𝐴 ≺ ω) | |
| 3 | domtriom.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | eqid 2729 | . . . 4 ⊢ {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} = {𝑦 ∣ (𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝒫 𝑛)} | |
| 5 | fveq2 6858 | . . . . . 6 ⊢ (𝑚 = 𝑛 → (𝑏‘𝑚) = (𝑏‘𝑛)) | |
| 6 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (𝑏‘𝑗) = (𝑏‘𝑘)) | |
| 7 | 6 | cbviunv 5004 | . . . . . . 7 ⊢ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) |
| 8 | iuneq1 4972 | . . . . . . 7 ⊢ (𝑚 = 𝑛 → ∪ 𝑘 ∈ 𝑚 (𝑏‘𝑘) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) | |
| 9 | 7, 8 | eqtrid 2776 | . . . . . 6 ⊢ (𝑚 = 𝑛 → ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗) = ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘)) |
| 10 | 5, 9 | difeq12d 4090 | . . . . 5 ⊢ (𝑚 = 𝑛 → ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗)) = ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
| 11 | 10 | cbvmptv 5211 | . . . 4 ⊢ (𝑚 ∈ ω ↦ ((𝑏‘𝑚) ∖ ∪ 𝑗 ∈ 𝑚 (𝑏‘𝑗))) = (𝑛 ∈ ω ↦ ((𝑏‘𝑛) ∖ ∪ 𝑘 ∈ 𝑛 (𝑏‘𝑘))) |
| 12 | 3, 4, 11 | domtriomlem 10395 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ω ≼ 𝐴) |
| 13 | 2, 12 | sylnbir 331 | . 2 ⊢ (¬ 𝐴 ≺ ω → ω ≼ 𝐴) |
| 14 | 1, 13 | impbii 209 | 1 ⊢ (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {cab 2707 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 𝒫 cpw 4563 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 |
| This theorem is referenced by: fin41 10397 dominf 10398 |
| Copyright terms: Public domain | W3C validator |