MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domtriom Structured version   Visualization version   GIF version

Theorem domtriom 10483
Description: Trichotomy of equinumerosity for ω, proven using countable choice. Equivalently, all Dedekind-finite sets (as in isfin4-2 10354) are finite in the usual sense and conversely. (Contributed by Mario Carneiro, 9-Feb-2013.)
Hypothesis
Ref Expression
domtriom.1 𝐴 ∈ V
Assertion
Ref Expression
domtriom (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)

Proof of Theorem domtriom
Dummy variables 𝑏 𝑛 𝑦 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 9139 . 2 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
2 isfinite 9692 . . 3 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
3 domtriom.1 . . . 4 𝐴 ∈ V
4 eqid 2737 . . . 4 {𝑦 ∣ (𝑦𝐴𝑦 ≈ 𝒫 𝑛)} = {𝑦 ∣ (𝑦𝐴𝑦 ≈ 𝒫 𝑛)}
5 fveq2 6906 . . . . . 6 (𝑚 = 𝑛 → (𝑏𝑚) = (𝑏𝑛))
6 fveq2 6906 . . . . . . . 8 (𝑗 = 𝑘 → (𝑏𝑗) = (𝑏𝑘))
76cbviunv 5040 . . . . . . 7 𝑗𝑚 (𝑏𝑗) = 𝑘𝑚 (𝑏𝑘)
8 iuneq1 5008 . . . . . . 7 (𝑚 = 𝑛 𝑘𝑚 (𝑏𝑘) = 𝑘𝑛 (𝑏𝑘))
97, 8eqtrid 2789 . . . . . 6 (𝑚 = 𝑛 𝑗𝑚 (𝑏𝑗) = 𝑘𝑛 (𝑏𝑘))
105, 9difeq12d 4127 . . . . 5 (𝑚 = 𝑛 → ((𝑏𝑚) ∖ 𝑗𝑚 (𝑏𝑗)) = ((𝑏𝑛) ∖ 𝑘𝑛 (𝑏𝑘)))
1110cbvmptv 5255 . . . 4 (𝑚 ∈ ω ↦ ((𝑏𝑚) ∖ 𝑗𝑚 (𝑏𝑗))) = (𝑛 ∈ ω ↦ ((𝑏𝑛) ∖ 𝑘𝑛 (𝑏𝑘)))
123, 4, 11domtriomlem 10482 . . 3 𝐴 ∈ Fin → ω ≼ 𝐴)
132, 12sylnbir 331 . 2 𝐴 ≺ ω → ω ≼ 𝐴)
141, 13impbii 209 1 (ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2108  {cab 2714  Vcvv 3480  cdif 3948  wss 3951  𝒫 cpw 4600   ciun 4991   class class class wbr 5143  cmpt 5225  cfv 6561  ωcom 7887  cen 8982  cdom 8983  csdm 8984  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979
This theorem is referenced by:  fin41  10484  dominf  10485
  Copyright terms: Public domain W3C validator