| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > termoo | Structured version Visualization version GIF version | ||
| Description: A terminal object is an object. (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| termoo | ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (TermO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 2 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 3 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 4 | 1, 2, 3 | istermoi 18011 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝐶)𝑂))) |
| 5 | 4 | simpld 494 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) |
| 6 | 5 | ex 412 | 1 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (TermO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃!weu 2567 ∀wral 3051 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Hom chom 17280 Catccat 17674 TermOctermo 17993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-termo 17996 |
| This theorem is referenced by: 2termoinv 18028 termoeu1w 18030 |
| Copyright terms: Public domain | W3C validator |