MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoo Structured version   Visualization version   GIF version

Theorem termoo 17962
Description: A terminal object is an object. (Contributed by AV, 18-Apr-2020.)
Assertion
Ref Expression
termoo (𝐢 ∈ Cat β†’ (𝑂 ∈ (TermOβ€˜πΆ) β†’ 𝑂 ∈ (Baseβ€˜πΆ)))

Proof of Theorem termoo
Dummy variables 𝑏 β„Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
2 eqid 2732 . . . 4 (Hom β€˜πΆ) = (Hom β€˜πΆ)
3 id 22 . . . 4 (𝐢 ∈ Cat β†’ 𝐢 ∈ Cat)
41, 2, 3istermoi 17954 . . 3 ((𝐢 ∈ Cat ∧ 𝑂 ∈ (TermOβ€˜πΆ)) β†’ (𝑂 ∈ (Baseβ€˜πΆ) ∧ βˆ€π‘ ∈ (Baseβ€˜πΆ)βˆƒ!β„Ž β„Ž ∈ (𝑏(Hom β€˜πΆ)𝑂)))
54simpld 495 . 2 ((𝐢 ∈ Cat ∧ 𝑂 ∈ (TermOβ€˜πΆ)) β†’ 𝑂 ∈ (Baseβ€˜πΆ))
65ex 413 1 (𝐢 ∈ Cat β†’ (𝑂 ∈ (TermOβ€˜πΆ) β†’ 𝑂 ∈ (Baseβ€˜πΆ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∈ wcel 2106  βˆƒ!weu 2562  βˆ€wral 3061  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  Hom chom 17212  Catccat 17612  TermOctermo 17936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-termo 17939
This theorem is referenced by:  2termoinv  17971  termoeu1w  17973
  Copyright terms: Public domain W3C validator