MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoo Structured version   Visualization version   GIF version

Theorem initoo 16860
Description: An initial object is an object. (Contributed by AV, 14-Apr-2020.)
Assertion
Ref Expression
initoo (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))

Proof of Theorem initoo
Dummy variables 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2771 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
3 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
41, 2, 3isinitoi 16856 . . 3 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑂(Hom ‘𝐶)𝑏)))
54simpld 482 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (InitO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))
65ex 397 1 (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2145  ∃!weu 2618  wral 3061  cfv 6029  (class class class)co 6792  Basecbs 16060  Hom chom 16156  Catccat 16528  InitOcinito 16841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5992  df-fun 6031  df-fv 6037  df-ov 6795  df-inito 16844
This theorem is referenced by:  iszeroi  16862  2initoinv  16863  initoeu1w  16865
  Copyright terms: Public domain W3C validator