MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoo Structured version   Visualization version   GIF version

Theorem initoo 17096
Description: An initial object is an object. (Contributed by AV, 14-Apr-2020.)
Assertion
Ref Expression
initoo (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))

Proof of Theorem initoo
Dummy variables 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2795 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2795 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
3 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
41, 2, 3isinitoi 17092 . . 3 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑂(Hom ‘𝐶)𝑏)))
54simpld 495 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (InitO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))
65ex 413 1 (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2081  ∃!weu 2611  wral 3105  cfv 6225  (class class class)co 7016  Basecbs 16312  Hom chom 16405  Catccat 16764  InitOcinito 17077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-iota 6189  df-fun 6227  df-fv 6233  df-ov 7019  df-inito 17080
This theorem is referenced by:  iszeroi  17098  2initoinv  17099  initoeu1w  17101
  Copyright terms: Public domain W3C validator