MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoo Structured version   Visualization version   GIF version

Theorem initoo 17513
Description: An initial object is an object. (Contributed by AV, 14-Apr-2020.)
Assertion
Ref Expression
initoo (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))

Proof of Theorem initoo
Dummy variables 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2737 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
3 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
41, 2, 3isinitoi 17505 . . 3 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑂(Hom ‘𝐶)𝑏)))
54simpld 498 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (InitO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))
65ex 416 1 (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110  ∃!weu 2567  wral 3061  cfv 6380  (class class class)co 7213  Basecbs 16760  Hom chom 16813  Catccat 17167  InitOcinito 17487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-ov 7216  df-inito 17490
This theorem is referenced by:  iszeroi  17515  2initoinv  17516  initoeu1w  17518
  Copyright terms: Public domain W3C validator