Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > initoo | Structured version Visualization version GIF version |
Description: An initial object is an object. (Contributed by AV, 14-Apr-2020.) |
Ref | Expression |
---|---|
initoo | ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
3 | id 22 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
4 | 1, 2, 3 | isinitoi 17714 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑂(Hom ‘𝐶)𝑏))) |
5 | 4 | simpld 495 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (InitO‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) |
6 | 5 | ex 413 | 1 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∃!weu 2568 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 Catccat 17373 InitOcinito 17696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-inito 17699 |
This theorem is referenced by: iszeroi 17724 2initoinv 17725 initoeu1w 17727 |
Copyright terms: Public domain | W3C validator |