Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2termoinv Structured version   Visualization version   GIF version

Theorem 2termoinv 17289
 Description: Morphisms between two terminal objects are inverses. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c (𝜑𝐶 ∈ Cat)
termoeu1.a (𝜑𝐴 ∈ (TermO‘𝐶))
termoeu1.b (𝜑𝐵 ∈ (TermO‘𝐶))
Assertion
Ref Expression
2termoinv ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)

Proof of Theorem 2termoinv
StepHypRef Expression
1 eqid 2798 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2798 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2798 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 termoeu1.c . . . . . 6 (𝜑𝐶 ∈ Cat)
543ad2ant1 1130 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
6 termoeu1.a . . . . . . 7 (𝜑𝐴 ∈ (TermO‘𝐶))
7 termoo 17280 . . . . . . 7 (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
84, 6, 7sylc 65 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝐶))
983ad2ant1 1130 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
10 termoeu1.b . . . . . . 7 (𝜑𝐵 ∈ (TermO‘𝐶))
11 termoo 17280 . . . . . . 7 (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
124, 10, 11sylc 65 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝐶))
13123ad2ant1 1130 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
14 simp3 1135 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵))
15 simp2 1134 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴))
161, 2, 3, 5, 9, 13, 9, 14, 15catcocl 16968 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴))
171, 2, 4termoid 17278 . . . . . . . 8 ((𝜑𝐴 ∈ (TermO‘𝐶)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
186, 17mpdan 686 . . . . . . 7 (𝜑 → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
19183ad2ant1 1130 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
2019eleq2d 2875 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)}))
21 elsni 4545 . . . . 5 ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)} → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
2220, 21syl6bi 256 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2316, 22mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
24 eqid 2798 . . . 4 (Id‘𝐶) = (Id‘𝐶)
25 eqid 2798 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
261, 2, 3, 24, 25, 5, 9, 13, 14, 15issect2 17036 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2723, 26mpbird 260 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Sect‘𝐶)𝐵)𝐺)
281, 2, 3, 5, 13, 9, 13, 15, 14catcocl 16968 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵))
291, 2, 4termoid 17278 . . . . . . . 8 ((𝜑𝐵 ∈ (TermO‘𝐶)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3010, 29mpdan 686 . . . . . . 7 (𝜑 → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
31303ad2ant1 1130 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3231eleq2d 2875 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)}))
33 elsni 4545 . . . . 5 ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)} → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
3432, 33syl6bi 256 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3528, 34mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
361, 2, 3, 24, 25, 5, 13, 9, 15, 14issect2 17036 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(𝐵(Sect‘𝐶)𝐴)𝐹 ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3735, 36mpbird 260 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)
38 eqid 2798 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
391, 38, 4, 8, 12, 25isinv 17042 . . 3 (𝜑 → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
40393ad2ant1 1130 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
4127, 37, 40mpbir2and 712 1 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {csn 4528  ⟨cop 4534   class class class wbr 5034  ‘cfv 6332  (class class class)co 7145  Basecbs 16495  Hom chom 16588  compcco 16589  Catccat 16947  Idccid 16948  Sectcsect 17026  Invcinv 17027  TermOctermo 17261 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7684  df-2nd 7685  df-cat 16951  df-cid 16952  df-sect 17029  df-inv 17030  df-termo 17264 This theorem is referenced by:  termoeu1  17290
 Copyright terms: Public domain W3C validator