Proof of Theorem 2termoinv
Step | Hyp | Ref
| Expression |
1 | | eqid 2739 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
2 | | eqid 2739 |
. . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
3 | | eqid 2739 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
4 | | termoeu1.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) |
5 | 4 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat) |
6 | | termoeu1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) |
7 | | termoo 17704 |
. . . . . . 7
⊢ (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) |
8 | 4, 6, 7 | sylc 65 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) |
9 | 8 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶)) |
10 | | termoeu1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) |
11 | | termoo 17704 |
. . . . . . 7
⊢ (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) |
12 | 4, 10, 11 | sylc 65 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) |
13 | 12 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶)) |
14 | | simp3 1136 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) |
15 | | simp2 1135 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
16 | 1, 2, 3, 5, 9, 13,
9, 14, 15 | catcocl 17375 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴)) |
17 | 1, 2, 4 | termoid 17698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (TermO‘𝐶)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)}) |
18 | 6, 17 | mpdan 683 |
. . . . . . 7
⊢ (𝜑 → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)}) |
19 | 18 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)}) |
20 | 19 | eleq2d 2825 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) ↔ (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)})) |
21 | | elsni 4583 |
. . . . 5
⊢ ((𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)} → (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)) |
22 | 20, 21 | syl6bi 252 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) → (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))) |
23 | 16, 22 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)) |
24 | | eqid 2739 |
. . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) |
25 | | eqid 2739 |
. . . 4
⊢
(Sect‘𝐶) =
(Sect‘𝐶) |
26 | 1, 2, 3, 24, 25, 5, 9, 13, 14, 15 | issect2 17447 |
. . 3
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ↔ (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))) |
27 | 23, 26 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Sect‘𝐶)𝐵)𝐺) |
28 | 1, 2, 3, 5, 13, 9,
13, 15, 14 | catcocl 17375 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵)) |
29 | 1, 2, 4 | termoid 17698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (TermO‘𝐶)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)}) |
30 | 10, 29 | mpdan 683 |
. . . . . . 7
⊢ (𝜑 → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)}) |
31 | 30 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)}) |
32 | 31 | eleq2d 2825 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) ↔ (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)})) |
33 | | elsni 4583 |
. . . . 5
⊢ ((𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)} → (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)) |
34 | 32, 33 | syl6bi 252 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) → (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))) |
35 | 28, 34 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)) |
36 | 1, 2, 3, 24, 25, 5, 13, 9, 15, 14 | issect2 17447 |
. . 3
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(𝐵(Sect‘𝐶)𝐴)𝐹 ↔ (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))) |
37 | 35, 36 | mpbird 256 |
. 2
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹) |
38 | | eqid 2739 |
. . . 4
⊢
(Inv‘𝐶) =
(Inv‘𝐶) |
39 | 1, 38, 4, 8, 12, 25 | isinv 17453 |
. . 3
⊢ (𝜑 → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ∧ 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹))) |
40 | 39 | 3ad2ant1 1131 |
. 2
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ∧ 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹))) |
41 | 27, 37, 40 | mpbir2and 709 |
1
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺) |