MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2termoinv Structured version   Visualization version   GIF version

Theorem 2termoinv 18035
Description: Morphisms between two terminal objects are inverses. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c (𝜑𝐶 ∈ Cat)
termoeu1.a (𝜑𝐴 ∈ (TermO‘𝐶))
termoeu1.b (𝜑𝐵 ∈ (TermO‘𝐶))
Assertion
Ref Expression
2termoinv ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)

Proof of Theorem 2termoinv
StepHypRef Expression
1 eqid 2736 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2736 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2736 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 termoeu1.c . . . . . 6 (𝜑𝐶 ∈ Cat)
543ad2ant1 1133 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat)
6 termoeu1.a . . . . . . 7 (𝜑𝐴 ∈ (TermO‘𝐶))
7 termoo 18026 . . . . . . 7 (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
84, 6, 7sylc 65 . . . . . 6 (𝜑𝐴 ∈ (Base‘𝐶))
983ad2ant1 1133 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶))
10 termoeu1.b . . . . . . 7 (𝜑𝐵 ∈ (TermO‘𝐶))
11 termoo 18026 . . . . . . 7 (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
124, 10, 11sylc 65 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝐶))
13123ad2ant1 1133 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶))
14 simp3 1138 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵))
15 simp2 1137 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴))
161, 2, 3, 5, 9, 13, 9, 14, 15catcocl 17702 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴))
171, 2, 4termoid 18020 . . . . . . . 8 ((𝜑𝐴 ∈ (TermO‘𝐶)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
186, 17mpdan 687 . . . . . . 7 (𝜑 → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
19183ad2ant1 1133 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)})
2019eleq2d 2821 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)}))
21 elsni 4623 . . . . 5 ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)} → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
2220, 21biimtrdi 253 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2316, 22mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))
24 eqid 2736 . . . 4 (Id‘𝐶) = (Id‘𝐶)
25 eqid 2736 . . . 4 (Sect‘𝐶) = (Sect‘𝐶)
261, 2, 3, 24, 25, 5, 9, 13, 14, 15issect2 17772 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ↔ (𝐺(⟨𝐴, 𝐵⟩(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)))
2723, 26mpbird 257 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Sect‘𝐶)𝐵)𝐺)
281, 2, 3, 5, 13, 9, 13, 15, 14catcocl 17702 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵))
291, 2, 4termoid 18020 . . . . . . . 8 ((𝜑𝐵 ∈ (TermO‘𝐶)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3010, 29mpdan 687 . . . . . . 7 (𝜑 → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
31303ad2ant1 1133 . . . . . 6 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)})
3231eleq2d 2821 . . . . 5 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)}))
33 elsni 4623 . . . . 5 ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)} → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
3432, 33biimtrdi 253 . . . 4 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3528, 34mpd 15 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))
361, 2, 3, 24, 25, 5, 13, 9, 15, 14issect2 17772 . . 3 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(𝐵(Sect‘𝐶)𝐴)𝐹 ↔ (𝐹(⟨𝐵, 𝐴⟩(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)))
3735, 36mpbird 257 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)
38 eqid 2736 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
391, 38, 4, 8, 12, 25isinv 17778 . . 3 (𝜑 → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
40393ad2ant1 1133 . 2 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺𝐺(𝐵(Sect‘𝐶)𝐴)𝐹)))
4127, 37, 40mpbir2and 713 1 ((𝜑𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {csn 4606  cop 4612   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  compcco 17288  Catccat 17681  Idccid 17682  Sectcsect 17762  Invcinv 17763  TermOctermo 18000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-cat 17685  df-cid 17686  df-sect 17765  df-inv 17766  df-termo 18003
This theorem is referenced by:  termoeu1  18036
  Copyright terms: Public domain W3C validator