MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2termoinv Structured version   Visualization version   GIF version

Theorem 2termoinv 17966
Description: Morphisms between two terminal objects are inverses. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c (πœ‘ β†’ 𝐢 ∈ Cat)
termoeu1.a (πœ‘ β†’ 𝐴 ∈ (TermOβ€˜πΆ))
termoeu1.b (πœ‘ β†’ 𝐡 ∈ (TermOβ€˜πΆ))
Assertion
Ref Expression
2termoinv ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐹(𝐴(Invβ€˜πΆ)𝐡)𝐺)

Proof of Theorem 2termoinv
StepHypRef Expression
1 eqid 2732 . . . . 5 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
2 eqid 2732 . . . . 5 (Hom β€˜πΆ) = (Hom β€˜πΆ)
3 eqid 2732 . . . . 5 (compβ€˜πΆ) = (compβ€˜πΆ)
4 termoeu1.c . . . . . 6 (πœ‘ β†’ 𝐢 ∈ Cat)
543ad2ant1 1133 . . . . 5 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐢 ∈ Cat)
6 termoeu1.a . . . . . . 7 (πœ‘ β†’ 𝐴 ∈ (TermOβ€˜πΆ))
7 termoo 17957 . . . . . . 7 (𝐢 ∈ Cat β†’ (𝐴 ∈ (TermOβ€˜πΆ) β†’ 𝐴 ∈ (Baseβ€˜πΆ)))
84, 6, 7sylc 65 . . . . . 6 (πœ‘ β†’ 𝐴 ∈ (Baseβ€˜πΆ))
983ad2ant1 1133 . . . . 5 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐴 ∈ (Baseβ€˜πΆ))
10 termoeu1.b . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ (TermOβ€˜πΆ))
11 termoo 17957 . . . . . . 7 (𝐢 ∈ Cat β†’ (𝐡 ∈ (TermOβ€˜πΆ) β†’ 𝐡 ∈ (Baseβ€˜πΆ)))
124, 10, 11sylc 65 . . . . . 6 (πœ‘ β†’ 𝐡 ∈ (Baseβ€˜πΆ))
13123ad2ant1 1133 . . . . 5 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐡 ∈ (Baseβ€˜πΆ))
14 simp3 1138 . . . . 5 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡))
15 simp2 1137 . . . . 5 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴))
161, 2, 3, 5, 9, 13, 9, 14, 15catcocl 17628 . . . 4 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) ∈ (𝐴(Hom β€˜πΆ)𝐴))
171, 2, 4termoid 17951 . . . . . . . 8 ((πœ‘ ∧ 𝐴 ∈ (TermOβ€˜πΆ)) β†’ (𝐴(Hom β€˜πΆ)𝐴) = {((Idβ€˜πΆ)β€˜π΄)})
186, 17mpdan 685 . . . . . . 7 (πœ‘ β†’ (𝐴(Hom β€˜πΆ)𝐴) = {((Idβ€˜πΆ)β€˜π΄)})
19183ad2ant1 1133 . . . . . 6 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐴(Hom β€˜πΆ)𝐴) = {((Idβ€˜πΆ)β€˜π΄)})
2019eleq2d 2819 . . . . 5 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ ((𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) ∈ (𝐴(Hom β€˜πΆ)𝐴) ↔ (𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) ∈ {((Idβ€˜πΆ)β€˜π΄)}))
21 elsni 4645 . . . . 5 ((𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) ∈ {((Idβ€˜πΆ)β€˜π΄)} β†’ (𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) = ((Idβ€˜πΆ)β€˜π΄))
2220, 21syl6bi 252 . . . 4 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ ((𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) ∈ (𝐴(Hom β€˜πΆ)𝐴) β†’ (𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) = ((Idβ€˜πΆ)β€˜π΄)))
2316, 22mpd 15 . . 3 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) = ((Idβ€˜πΆ)β€˜π΄))
24 eqid 2732 . . . 4 (Idβ€˜πΆ) = (Idβ€˜πΆ)
25 eqid 2732 . . . 4 (Sectβ€˜πΆ) = (Sectβ€˜πΆ)
261, 2, 3, 24, 25, 5, 9, 13, 14, 15issect2 17700 . . 3 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐹(𝐴(Sectβ€˜πΆ)𝐡)𝐺 ↔ (𝐺(⟨𝐴, 𝐡⟩(compβ€˜πΆ)𝐴)𝐹) = ((Idβ€˜πΆ)β€˜π΄)))
2723, 26mpbird 256 . 2 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐹(𝐴(Sectβ€˜πΆ)𝐡)𝐺)
281, 2, 3, 5, 13, 9, 13, 15, 14catcocl 17628 . . . 4 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) ∈ (𝐡(Hom β€˜πΆ)𝐡))
291, 2, 4termoid 17951 . . . . . . . 8 ((πœ‘ ∧ 𝐡 ∈ (TermOβ€˜πΆ)) β†’ (𝐡(Hom β€˜πΆ)𝐡) = {((Idβ€˜πΆ)β€˜π΅)})
3010, 29mpdan 685 . . . . . . 7 (πœ‘ β†’ (𝐡(Hom β€˜πΆ)𝐡) = {((Idβ€˜πΆ)β€˜π΅)})
31303ad2ant1 1133 . . . . . 6 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐡(Hom β€˜πΆ)𝐡) = {((Idβ€˜πΆ)β€˜π΅)})
3231eleq2d 2819 . . . . 5 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ ((𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) ∈ (𝐡(Hom β€˜πΆ)𝐡) ↔ (𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) ∈ {((Idβ€˜πΆ)β€˜π΅)}))
33 elsni 4645 . . . . 5 ((𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) ∈ {((Idβ€˜πΆ)β€˜π΅)} β†’ (𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) = ((Idβ€˜πΆ)β€˜π΅))
3432, 33syl6bi 252 . . . 4 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ ((𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) ∈ (𝐡(Hom β€˜πΆ)𝐡) β†’ (𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) = ((Idβ€˜πΆ)β€˜π΅)))
3528, 34mpd 15 . . 3 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) = ((Idβ€˜πΆ)β€˜π΅))
361, 2, 3, 24, 25, 5, 13, 9, 15, 14issect2 17700 . . 3 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐺(𝐡(Sectβ€˜πΆ)𝐴)𝐹 ↔ (𝐹(⟨𝐡, 𝐴⟩(compβ€˜πΆ)𝐡)𝐺) = ((Idβ€˜πΆ)β€˜π΅)))
3735, 36mpbird 256 . 2 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐺(𝐡(Sectβ€˜πΆ)𝐴)𝐹)
38 eqid 2732 . . . 4 (Invβ€˜πΆ) = (Invβ€˜πΆ)
391, 38, 4, 8, 12, 25isinv 17706 . . 3 (πœ‘ β†’ (𝐹(𝐴(Invβ€˜πΆ)𝐡)𝐺 ↔ (𝐹(𝐴(Sectβ€˜πΆ)𝐡)𝐺 ∧ 𝐺(𝐡(Sectβ€˜πΆ)𝐴)𝐹)))
40393ad2ant1 1133 . 2 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ (𝐹(𝐴(Invβ€˜πΆ)𝐡)𝐺 ↔ (𝐹(𝐴(Sectβ€˜πΆ)𝐡)𝐺 ∧ 𝐺(𝐡(Sectβ€˜πΆ)𝐴)𝐹)))
4127, 37, 40mpbir2and 711 1 ((πœ‘ ∧ 𝐺 ∈ (𝐡(Hom β€˜πΆ)𝐴) ∧ 𝐹 ∈ (𝐴(Hom β€˜πΆ)𝐡)) β†’ 𝐹(𝐴(Invβ€˜πΆ)𝐡)𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {csn 4628  βŸ¨cop 4634   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  Hom chom 17207  compcco 17208  Catccat 17607  Idccid 17608  Sectcsect 17690  Invcinv 17691  TermOctermo 17931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-cat 17611  df-cid 17612  df-sect 17693  df-inv 17694  df-termo 17934
This theorem is referenced by:  termoeu1  17967
  Copyright terms: Public domain W3C validator