Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . 5
β’
(BaseβπΆ) =
(BaseβπΆ) |
2 | | eqid 2732 |
. . . . 5
β’ (Hom
βπΆ) = (Hom
βπΆ) |
3 | | eqid 2732 |
. . . . 5
β’
(compβπΆ) =
(compβπΆ) |
4 | | termoeu1.c |
. . . . . 6
β’ (π β πΆ β Cat) |
5 | 4 | 3ad2ant1 1133 |
. . . . 5
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β πΆ β Cat) |
6 | | termoeu1.a |
. . . . . . 7
β’ (π β π΄ β (TermOβπΆ)) |
7 | | termoo 17957 |
. . . . . . 7
β’ (πΆ β Cat β (π΄ β (TermOβπΆ) β π΄ β (BaseβπΆ))) |
8 | 4, 6, 7 | sylc 65 |
. . . . . 6
β’ (π β π΄ β (BaseβπΆ)) |
9 | 8 | 3ad2ant1 1133 |
. . . . 5
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β π΄ β (BaseβπΆ)) |
10 | | termoeu1.b |
. . . . . . 7
β’ (π β π΅ β (TermOβπΆ)) |
11 | | termoo 17957 |
. . . . . . 7
β’ (πΆ β Cat β (π΅ β (TermOβπΆ) β π΅ β (BaseβπΆ))) |
12 | 4, 10, 11 | sylc 65 |
. . . . . 6
β’ (π β π΅ β (BaseβπΆ)) |
13 | 12 | 3ad2ant1 1133 |
. . . . 5
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β π΅ β (BaseβπΆ)) |
14 | | simp3 1138 |
. . . . 5
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β πΉ β (π΄(Hom βπΆ)π΅)) |
15 | | simp2 1137 |
. . . . 5
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β πΊ β (π΅(Hom βπΆ)π΄)) |
16 | 1, 2, 3, 5, 9, 13,
9, 14, 15 | catcocl 17628 |
. . . 4
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) β (π΄(Hom βπΆ)π΄)) |
17 | 1, 2, 4 | termoid 17951 |
. . . . . . . 8
β’ ((π β§ π΄ β (TermOβπΆ)) β (π΄(Hom βπΆ)π΄) = {((IdβπΆ)βπ΄)}) |
18 | 6, 17 | mpdan 685 |
. . . . . . 7
β’ (π β (π΄(Hom βπΆ)π΄) = {((IdβπΆ)βπ΄)}) |
19 | 18 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (π΄(Hom βπΆ)π΄) = {((IdβπΆ)βπ΄)}) |
20 | 19 | eleq2d 2819 |
. . . . 5
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β ((πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) β (π΄(Hom βπΆ)π΄) β (πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) β {((IdβπΆ)βπ΄)})) |
21 | | elsni 4645 |
. . . . 5
β’ ((πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) β {((IdβπΆ)βπ΄)} β (πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) = ((IdβπΆ)βπ΄)) |
22 | 20, 21 | syl6bi 252 |
. . . 4
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β ((πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) β (π΄(Hom βπΆ)π΄) β (πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) = ((IdβπΆ)βπ΄))) |
23 | 16, 22 | mpd 15 |
. . 3
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) = ((IdβπΆ)βπ΄)) |
24 | | eqid 2732 |
. . . 4
β’
(IdβπΆ) =
(IdβπΆ) |
25 | | eqid 2732 |
. . . 4
β’
(SectβπΆ) =
(SectβπΆ) |
26 | 1, 2, 3, 24, 25, 5, 9, 13, 14, 15 | issect2 17700 |
. . 3
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (πΉ(π΄(SectβπΆ)π΅)πΊ β (πΊ(β¨π΄, π΅β©(compβπΆ)π΄)πΉ) = ((IdβπΆ)βπ΄))) |
27 | 23, 26 | mpbird 256 |
. 2
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β πΉ(π΄(SectβπΆ)π΅)πΊ) |
28 | 1, 2, 3, 5, 13, 9,
13, 15, 14 | catcocl 17628 |
. . . 4
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) β (π΅(Hom βπΆ)π΅)) |
29 | 1, 2, 4 | termoid 17951 |
. . . . . . . 8
β’ ((π β§ π΅ β (TermOβπΆ)) β (π΅(Hom βπΆ)π΅) = {((IdβπΆ)βπ΅)}) |
30 | 10, 29 | mpdan 685 |
. . . . . . 7
β’ (π β (π΅(Hom βπΆ)π΅) = {((IdβπΆ)βπ΅)}) |
31 | 30 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (π΅(Hom βπΆ)π΅) = {((IdβπΆ)βπ΅)}) |
32 | 31 | eleq2d 2819 |
. . . . 5
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β ((πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) β (π΅(Hom βπΆ)π΅) β (πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) β {((IdβπΆ)βπ΅)})) |
33 | | elsni 4645 |
. . . . 5
β’ ((πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) β {((IdβπΆ)βπ΅)} β (πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) = ((IdβπΆ)βπ΅)) |
34 | 32, 33 | syl6bi 252 |
. . . 4
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β ((πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) β (π΅(Hom βπΆ)π΅) β (πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) = ((IdβπΆ)βπ΅))) |
35 | 28, 34 | mpd 15 |
. . 3
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) = ((IdβπΆ)βπ΅)) |
36 | 1, 2, 3, 24, 25, 5, 13, 9, 15, 14 | issect2 17700 |
. . 3
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (πΊ(π΅(SectβπΆ)π΄)πΉ β (πΉ(β¨π΅, π΄β©(compβπΆ)π΅)πΊ) = ((IdβπΆ)βπ΅))) |
37 | 35, 36 | mpbird 256 |
. 2
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β πΊ(π΅(SectβπΆ)π΄)πΉ) |
38 | | eqid 2732 |
. . . 4
β’
(InvβπΆ) =
(InvβπΆ) |
39 | 1, 38, 4, 8, 12, 25 | isinv 17706 |
. . 3
β’ (π β (πΉ(π΄(InvβπΆ)π΅)πΊ β (πΉ(π΄(SectβπΆ)π΅)πΊ β§ πΊ(π΅(SectβπΆ)π΄)πΉ))) |
40 | 39 | 3ad2ant1 1133 |
. 2
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β (πΉ(π΄(InvβπΆ)π΅)πΊ β (πΉ(π΄(SectβπΆ)π΅)πΊ β§ πΊ(π΅(SectβπΆ)π΄)πΉ))) |
41 | 27, 37, 40 | mpbir2and 711 |
1
β’ ((π β§ πΊ β (π΅(Hom βπΆ)π΄) β§ πΉ β (π΄(Hom βπΆ)π΅)) β πΉ(π΄(InvβπΆ)π΅)πΊ) |