Proof of Theorem 2termoinv
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 2 |  | eqid 2736 | . . . . 5
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) | 
| 3 |  | eqid 2736 | . . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) | 
| 4 |  | termoeu1.c | . . . . . 6
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 5 | 4 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐶 ∈ Cat) | 
| 6 |  | termoeu1.a | . . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) | 
| 7 |  | termoo 18054 | . . . . . . 7
⊢ (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) | 
| 8 | 4, 6, 7 | sylc 65 | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) | 
| 9 | 8 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐴 ∈ (Base‘𝐶)) | 
| 10 |  | termoeu1.b | . . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) | 
| 11 |  | termoo 18054 | . . . . . . 7
⊢ (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) | 
| 12 | 4, 10, 11 | sylc 65 | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) | 
| 13 | 12 | 3ad2ant1 1133 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐵 ∈ (Base‘𝐶)) | 
| 14 |  | simp3 1138 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) | 
| 15 |  | simp2 1137 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴)) | 
| 16 | 1, 2, 3, 5, 9, 13,
9, 14, 15 | catcocl 17729 | . . . 4
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴)) | 
| 17 | 1, 2, 4 | termoid 18048 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ (TermO‘𝐶)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)}) | 
| 18 | 6, 17 | mpdan 687 | . . . . . . 7
⊢ (𝜑 → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)}) | 
| 19 | 18 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐴(Hom ‘𝐶)𝐴) = {((Id‘𝐶)‘𝐴)}) | 
| 20 | 19 | eleq2d 2826 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) ↔ (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)})) | 
| 21 |  | elsni 4642 | . . . . 5
⊢ ((𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ {((Id‘𝐶)‘𝐴)} → (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)) | 
| 22 | 20, 21 | biimtrdi 253 | . . . 4
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) ∈ (𝐴(Hom ‘𝐶)𝐴) → (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))) | 
| 23 | 16, 22 | mpd 15 | . . 3
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴)) | 
| 24 |  | eqid 2736 | . . . 4
⊢
(Id‘𝐶) =
(Id‘𝐶) | 
| 25 |  | eqid 2736 | . . . 4
⊢
(Sect‘𝐶) =
(Sect‘𝐶) | 
| 26 | 1, 2, 3, 24, 25, 5, 9, 13, 14, 15 | issect2 17799 | . . 3
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ↔ (𝐺(〈𝐴, 𝐵〉(comp‘𝐶)𝐴)𝐹) = ((Id‘𝐶)‘𝐴))) | 
| 27 | 23, 26 | mpbird 257 | . 2
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Sect‘𝐶)𝐵)𝐺) | 
| 28 | 1, 2, 3, 5, 13, 9,
13, 15, 14 | catcocl 17729 | . . . 4
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵)) | 
| 29 | 1, 2, 4 | termoid 18048 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ∈ (TermO‘𝐶)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)}) | 
| 30 | 10, 29 | mpdan 687 | . . . . . . 7
⊢ (𝜑 → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)}) | 
| 31 | 30 | 3ad2ant1 1133 | . . . . . 6
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐵(Hom ‘𝐶)𝐵) = {((Id‘𝐶)‘𝐵)}) | 
| 32 | 31 | eleq2d 2826 | . . . . 5
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) ↔ (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)})) | 
| 33 |  | elsni 4642 | . . . . 5
⊢ ((𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ {((Id‘𝐶)‘𝐵)} → (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)) | 
| 34 | 32, 33 | biimtrdi 253 | . . . 4
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → ((𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) ∈ (𝐵(Hom ‘𝐶)𝐵) → (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))) | 
| 35 | 28, 34 | mpd 15 | . . 3
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵)) | 
| 36 | 1, 2, 3, 24, 25, 5, 13, 9, 15, 14 | issect2 17799 | . . 3
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐺(𝐵(Sect‘𝐶)𝐴)𝐹 ↔ (𝐹(〈𝐵, 𝐴〉(comp‘𝐶)𝐵)𝐺) = ((Id‘𝐶)‘𝐵))) | 
| 37 | 35, 36 | mpbird 257 | . 2
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹) | 
| 38 |  | eqid 2736 | . . . 4
⊢
(Inv‘𝐶) =
(Inv‘𝐶) | 
| 39 | 1, 38, 4, 8, 12, 25 | isinv 17805 | . . 3
⊢ (𝜑 → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ∧ 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹))) | 
| 40 | 39 | 3ad2ant1 1133 | . 2
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → (𝐹(𝐴(Inv‘𝐶)𝐵)𝐺 ↔ (𝐹(𝐴(Sect‘𝐶)𝐵)𝐺 ∧ 𝐺(𝐵(Sect‘𝐶)𝐴)𝐹))) | 
| 41 | 27, 37, 40 | mpbir2and 713 | 1
⊢ ((𝜑 ∧ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐴) ∧ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐵)) → 𝐹(𝐴(Inv‘𝐶)𝐵)𝐺) |