MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  termoeu1w Structured version   Visualization version   GIF version

Theorem termoeu1w 18086
Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
termoeu1.c (𝜑𝐶 ∈ Cat)
termoeu1.a (𝜑𝐴 ∈ (TermO‘𝐶))
termoeu1.b (𝜑𝐵 ∈ (TermO‘𝐶))
Assertion
Ref Expression
termoeu1w (𝜑𝐴( ≃𝑐𝐶)𝐵)

Proof of Theorem termoeu1w
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 termoeu1.c . . . 4 (𝜑𝐶 ∈ Cat)
2 termoeu1.a . . . 4 (𝜑𝐴 ∈ (TermO‘𝐶))
3 termoeu1.b . . . 4 (𝜑𝐵 ∈ (TermO‘𝐶))
41, 2, 3termoeu1 18085 . . 3 (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
5 euex 2580 . . 3 (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
64, 5syl 17 . 2 (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))
7 eqid 2740 . . 3 (Iso‘𝐶) = (Iso‘𝐶)
8 eqid 2740 . . 3 (Base‘𝐶) = (Base‘𝐶)
9 termoo 18075 . . . 4 (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶)))
101, 2, 9sylc 65 . . 3 (𝜑𝐴 ∈ (Base‘𝐶))
11 termoo 18075 . . . 4 (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶)))
121, 3, 11sylc 65 . . 3 (𝜑𝐵 ∈ (Base‘𝐶))
137, 8, 1, 10, 12cic 17860 . 2 (𝜑 → (𝐴( ≃𝑐𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)))
146, 13mpbird 257 1 (𝜑𝐴( ≃𝑐𝐶)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1777  wcel 2108  ∃!weu 2571   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  Catccat 17722  Isociso 17807  𝑐 ccic 17856  TermOctermo 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-supp 8202  df-cat 17726  df-cid 17727  df-sect 17808  df-inv 17809  df-iso 17810  df-cic 17857  df-termo 18052
This theorem is referenced by:  nzerooringczr  21514
  Copyright terms: Public domain W3C validator