Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > termoeu1w | Structured version Visualization version GIF version |
Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
Ref | Expression |
---|---|
termoeu1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
termoeu1.a | ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) |
termoeu1.b | ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) |
Ref | Expression |
---|---|
termoeu1w | ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | termoeu1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | termoeu1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) | |
3 | termoeu1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) | |
4 | 1, 2, 3 | termoeu1 17403 | . . 3 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
5 | euex 2579 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
7 | eqid 2739 | . . 3 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
8 | eqid 2739 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | termoo 17393 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) | |
10 | 1, 2, 9 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) |
11 | termoo 17393 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) | |
12 | 1, 3, 11 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) |
13 | 7, 8, 1, 10, 12 | cic 17187 | . 2 ⊢ (𝜑 → (𝐴( ≃𝑐 ‘𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
14 | 6, 13 | mpbird 260 | 1 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1786 ∈ wcel 2114 ∃!weu 2570 class class class wbr 5040 ‘cfv 6350 (class class class)co 7183 Basecbs 16599 Catccat 17051 Isociso 17134 ≃𝑐 ccic 17183 TermOctermo 17367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-1st 7727 df-2nd 7728 df-supp 7870 df-cat 17055 df-cid 17056 df-sect 17135 df-inv 17136 df-iso 17137 df-cic 17184 df-termo 17370 |
This theorem is referenced by: nzerooringczr 45212 |
Copyright terms: Public domain | W3C validator |