| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > termoeu1w | Structured version Visualization version GIF version | ||
| Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| termoeu1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| termoeu1.a | ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) |
| termoeu1.b | ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) |
| Ref | Expression |
|---|---|
| termoeu1w | ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termoeu1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | termoeu1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) | |
| 3 | termoeu1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) | |
| 4 | 1, 2, 3 | termoeu1 17980 | . . 3 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 5 | euex 2570 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 7 | eqid 2729 | . . 3 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 8 | eqid 2729 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | termoo 17970 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) | |
| 10 | 1, 2, 9 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) |
| 11 | termoo 17970 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) | |
| 12 | 1, 3, 11 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) |
| 13 | 7, 8, 1, 10, 12 | cic 17761 | . 2 ⊢ (𝜑 → (𝐴( ≃𝑐 ‘𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Catccat 17625 Isociso 17708 ≃𝑐 ccic 17757 TermOctermo 17944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-supp 8140 df-cat 17629 df-cid 17630 df-sect 17709 df-inv 17710 df-iso 17711 df-cic 17758 df-termo 17947 |
| This theorem is referenced by: nzerooringczr 21390 termcterm2 49503 termcciso 49505 |
| Copyright terms: Public domain | W3C validator |