![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > termoeu1w | Structured version Visualization version GIF version |
Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
Ref | Expression |
---|---|
termoeu1.c | β’ (π β πΆ β Cat) |
termoeu1.a | β’ (π β π΄ β (TermOβπΆ)) |
termoeu1.b | β’ (π β π΅ β (TermOβπΆ)) |
Ref | Expression |
---|---|
termoeu1w | β’ (π β π΄( βπ βπΆ)π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | termoeu1.c | . . . 4 β’ (π β πΆ β Cat) | |
2 | termoeu1.a | . . . 4 β’ (π β π΄ β (TermOβπΆ)) | |
3 | termoeu1.b | . . . 4 β’ (π β π΅ β (TermOβπΆ)) | |
4 | 1, 2, 3 | termoeu1 17973 | . . 3 β’ (π β β!π π β (π΄(IsoβπΆ)π΅)) |
5 | euex 2570 | . . 3 β’ (β!π π β (π΄(IsoβπΆ)π΅) β βπ π β (π΄(IsoβπΆ)π΅)) | |
6 | 4, 5 | syl 17 | . 2 β’ (π β βπ π β (π΄(IsoβπΆ)π΅)) |
7 | eqid 2731 | . . 3 β’ (IsoβπΆ) = (IsoβπΆ) | |
8 | eqid 2731 | . . 3 β’ (BaseβπΆ) = (BaseβπΆ) | |
9 | termoo 17963 | . . . 4 β’ (πΆ β Cat β (π΄ β (TermOβπΆ) β π΄ β (BaseβπΆ))) | |
10 | 1, 2, 9 | sylc 65 | . . 3 β’ (π β π΄ β (BaseβπΆ)) |
11 | termoo 17963 | . . . 4 β’ (πΆ β Cat β (π΅ β (TermOβπΆ) β π΅ β (BaseβπΆ))) | |
12 | 1, 3, 11 | sylc 65 | . . 3 β’ (π β π΅ β (BaseβπΆ)) |
13 | 7, 8, 1, 10, 12 | cic 17751 | . 2 β’ (π β (π΄( βπ βπΆ)π΅ β βπ π β (π΄(IsoβπΆ)π΅))) |
14 | 6, 13 | mpbird 256 | 1 β’ (π β π΄( βπ βπΆ)π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 βwex 1780 β wcel 2105 β!weu 2561 class class class wbr 5149 βcfv 6544 (class class class)co 7412 Basecbs 17149 Catccat 17613 Isociso 17698 βπ ccic 17747 TermOctermo 17937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-supp 8150 df-cat 17617 df-cid 17618 df-sect 17699 df-inv 17700 df-iso 17701 df-cic 17748 df-termo 17940 |
This theorem is referenced by: nzerooringczr 47060 |
Copyright terms: Public domain | W3C validator |