| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > termoeu1w | Structured version Visualization version GIF version | ||
| Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| termoeu1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| termoeu1.a | ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) |
| termoeu1.b | ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) |
| Ref | Expression |
|---|---|
| termoeu1w | ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termoeu1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | termoeu1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) | |
| 3 | termoeu1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) | |
| 4 | 1, 2, 3 | termoeu1 18036 | . . 3 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 5 | euex 2577 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 7 | eqid 2736 | . . 3 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 8 | eqid 2736 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | termoo 18026 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) | |
| 10 | 1, 2, 9 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) |
| 11 | termoo 18026 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) | |
| 12 | 1, 3, 11 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) |
| 13 | 7, 8, 1, 10, 12 | cic 17817 | . 2 ⊢ (𝜑 → (𝐴( ≃𝑐 ‘𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 ∈ wcel 2109 ∃!weu 2568 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Catccat 17681 Isociso 17764 ≃𝑐 ccic 17813 TermOctermo 18000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-supp 8165 df-cat 17685 df-cid 17686 df-sect 17765 df-inv 17766 df-iso 17767 df-cic 17814 df-termo 18003 |
| This theorem is referenced by: nzerooringczr 21446 termcterm2 49366 termcciso 49368 |
| Copyright terms: Public domain | W3C validator |