| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > termoeu1w | Structured version Visualization version GIF version | ||
| Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| termoeu1.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| termoeu1.a | ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) |
| termoeu1.b | ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) |
| Ref | Expression |
|---|---|
| termoeu1w | ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termoeu1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | termoeu1.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (TermO‘𝐶)) | |
| 3 | termoeu1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (TermO‘𝐶)) | |
| 4 | 1, 2, 3 | termoeu1 17925 | . . 3 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 5 | euex 2572 | . . 3 ⊢ (∃!𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵) → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵)) |
| 7 | eqid 2731 | . . 3 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
| 8 | eqid 2731 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | termoo 17915 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐴 ∈ (TermO‘𝐶) → 𝐴 ∈ (Base‘𝐶))) | |
| 10 | 1, 2, 9 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (Base‘𝐶)) |
| 11 | termoo 17915 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝐵 ∈ (TermO‘𝐶) → 𝐵 ∈ (Base‘𝐶))) | |
| 12 | 1, 3, 11 | sylc 65 | . . 3 ⊢ (𝜑 → 𝐵 ∈ (Base‘𝐶)) |
| 13 | 7, 8, 1, 10, 12 | cic 17706 | . 2 ⊢ (𝜑 → (𝐴( ≃𝑐 ‘𝐶)𝐵 ↔ ∃𝑓 𝑓 ∈ (𝐴(Iso‘𝐶)𝐵))) |
| 14 | 6, 13 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴( ≃𝑐 ‘𝐶)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Catccat 17570 Isociso 17653 ≃𝑐 ccic 17702 TermOctermo 17889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-supp 8091 df-cat 17574 df-cid 17575 df-sect 17654 df-inv 17655 df-iso 17656 df-cic 17703 df-termo 17892 |
| This theorem is referenced by: nzerooringczr 21417 termcterm2 49554 termcciso 49556 |
| Copyright terms: Public domain | W3C validator |