Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfinds3 | Structured version Visualization version GIF version |
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.) |
Ref | Expression |
---|---|
tfinds3.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
tfinds3.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
tfinds3.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
tfinds3.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
tfinds3.5 | ⊢ (𝜂 → 𝜓) |
tfinds3.6 | ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) |
tfinds3.7 | ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) |
Ref | Expression |
---|---|
tfinds3 | ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfinds3.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi2d 340 | . 2 ⊢ (𝑥 = ∅ → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜓))) |
3 | tfinds3.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
4 | 3 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜒))) |
5 | tfinds3.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
6 | 5 | imbi2d 340 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜃))) |
7 | tfinds3.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
8 | 7 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜏))) |
9 | tfinds3.5 | . 2 ⊢ (𝜂 → 𝜓) | |
10 | tfinds3.6 | . . 3 ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) | |
11 | 10 | a2d 29 | . 2 ⊢ (𝑦 ∈ On → ((𝜂 → 𝜒) → (𝜂 → 𝜃))) |
12 | r19.21v 3173 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) ↔ (𝜂 → ∀𝑦 ∈ 𝑥 𝜒)) | |
13 | tfinds3.7 | . . . 4 ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) | |
14 | 13 | a2d 29 | . . 3 ⊢ (Lim 𝑥 → ((𝜂 → ∀𝑦 ∈ 𝑥 𝜒) → (𝜂 → 𝜑))) |
15 | 12, 14 | biimtrid 241 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) → (𝜂 → 𝜑))) |
16 | 2, 4, 6, 8, 9, 11, 15 | tfinds 7753 | 1 ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ∅c0 4267 Oncon0 6289 Lim wlim 6290 suc csuc 6291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-tr 5205 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 |
This theorem is referenced by: oacl 8415 omcl 8416 oecl 8417 oawordri 8431 oaass 8442 oarec 8443 omordi 8447 omwordri 8453 odi 8460 omass 8461 oen0 8467 oewordri 8473 oeworde 8474 oeoelem 8479 omabs 8531 tfindsd 42057 |
Copyright terms: Public domain | W3C validator |