| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfinds3 | Structured version Visualization version GIF version | ||
| Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| tfinds3.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| tfinds3.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| tfinds3.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| tfinds3.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| tfinds3.5 | ⊢ (𝜂 → 𝜓) |
| tfinds3.6 | ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) |
| tfinds3.7 | ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) |
| Ref | Expression |
|---|---|
| tfinds3 | ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfinds3.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi2d 340 | . 2 ⊢ (𝑥 = ∅ → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜓))) |
| 3 | tfinds3.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 4 | 3 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜒))) |
| 5 | tfinds3.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 6 | 5 | imbi2d 340 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜃))) |
| 7 | tfinds3.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 8 | 7 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜏))) |
| 9 | tfinds3.5 | . 2 ⊢ (𝜂 → 𝜓) | |
| 10 | tfinds3.6 | . . 3 ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) | |
| 11 | 10 | a2d 29 | . 2 ⊢ (𝑦 ∈ On → ((𝜂 → 𝜒) → (𝜂 → 𝜃))) |
| 12 | r19.21v 3158 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) ↔ (𝜂 → ∀𝑦 ∈ 𝑥 𝜒)) | |
| 13 | tfinds3.7 | . . . 4 ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) | |
| 14 | 13 | a2d 29 | . . 3 ⊢ (Lim 𝑥 → ((𝜂 → ∀𝑦 ∈ 𝑥 𝜒) → (𝜂 → 𝜑))) |
| 15 | 12, 14 | biimtrid 242 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) → (𝜂 → 𝜑))) |
| 16 | 2, 4, 6, 8, 9, 11, 15 | tfinds 7816 | 1 ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4292 Oncon0 6320 Lim wlim 6321 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 |
| This theorem is referenced by: oacl 8476 omcl 8477 oecl 8478 oawordri 8491 oaass 8502 oarec 8503 omordi 8507 omwordri 8513 odi 8520 omass 8521 oen0 8527 oewordri 8533 oeworde 8534 oeoelem 8539 omabs 8592 tfindsd 44172 |
| Copyright terms: Public domain | W3C validator |