| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfinds3 | Structured version Visualization version GIF version | ||
| Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.) |
| Ref | Expression |
|---|---|
| tfinds3.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| tfinds3.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| tfinds3.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| tfinds3.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| tfinds3.5 | ⊢ (𝜂 → 𝜓) |
| tfinds3.6 | ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) |
| tfinds3.7 | ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) |
| Ref | Expression |
|---|---|
| tfinds3 | ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfinds3.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | imbi2d 340 | . 2 ⊢ (𝑥 = ∅ → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜓))) |
| 3 | tfinds3.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 4 | 3 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜒))) |
| 5 | tfinds3.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 6 | 5 | imbi2d 340 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜃))) |
| 7 | tfinds3.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 8 | 7 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜏))) |
| 9 | tfinds3.5 | . 2 ⊢ (𝜂 → 𝜓) | |
| 10 | tfinds3.6 | . . 3 ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) | |
| 11 | 10 | a2d 29 | . 2 ⊢ (𝑦 ∈ On → ((𝜂 → 𝜒) → (𝜂 → 𝜃))) |
| 12 | r19.21v 3154 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) ↔ (𝜂 → ∀𝑦 ∈ 𝑥 𝜒)) | |
| 13 | tfinds3.7 | . . . 4 ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) | |
| 14 | 13 | a2d 29 | . . 3 ⊢ (Lim 𝑥 → ((𝜂 → ∀𝑦 ∈ 𝑥 𝜒) → (𝜂 → 𝜑))) |
| 15 | 12, 14 | biimtrid 242 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) → (𝜂 → 𝜑))) |
| 16 | 2, 4, 6, 8, 9, 11, 15 | tfinds 7793 | 1 ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∅c0 4284 Oncon0 6307 Lim wlim 6308 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 |
| This theorem is referenced by: oacl 8453 omcl 8454 oecl 8455 oawordri 8468 oaass 8479 oarec 8480 omordi 8484 omwordri 8490 odi 8497 omass 8498 oen0 8504 oewordri 8510 oeworde 8511 oeoelem 8516 omabs 8569 tfindsd 44193 |
| Copyright terms: Public domain | W3C validator |