MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds3 Structured version   Visualization version   GIF version

Theorem tfinds3 7395
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.)
Hypotheses
Ref Expression
tfinds3.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds3.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds3.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds3.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfinds3.5 (𝜂𝜓)
tfinds3.6 (𝑦 ∈ On → (𝜂 → (𝜒𝜃)))
tfinds3.7 (Lim 𝑥 → (𝜂 → (∀𝑦𝑥 𝜒𝜑)))
Assertion
Ref Expression
tfinds3 (𝐴 ∈ On → (𝜂𝜏))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑦   𝜒,𝑥   𝜏,𝑥   𝑥,𝑦,𝜂
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfinds3
StepHypRef Expression
1 tfinds3.1 . . 3 (𝑥 = ∅ → (𝜑𝜓))
21imbi2d 333 . 2 (𝑥 = ∅ → ((𝜂𝜑) ↔ (𝜂𝜓)))
3 tfinds3.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
43imbi2d 333 . 2 (𝑥 = 𝑦 → ((𝜂𝜑) ↔ (𝜂𝜒)))
5 tfinds3.3 . . 3 (𝑥 = suc 𝑦 → (𝜑𝜃))
65imbi2d 333 . 2 (𝑥 = suc 𝑦 → ((𝜂𝜑) ↔ (𝜂𝜃)))
7 tfinds3.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
87imbi2d 333 . 2 (𝑥 = 𝐴 → ((𝜂𝜑) ↔ (𝜂𝜏)))
9 tfinds3.5 . 2 (𝜂𝜓)
10 tfinds3.6 . . 3 (𝑦 ∈ On → (𝜂 → (𝜒𝜃)))
1110a2d 29 . 2 (𝑦 ∈ On → ((𝜂𝜒) → (𝜂𝜃)))
12 r19.21v 3126 . . 3 (∀𝑦𝑥 (𝜂𝜒) ↔ (𝜂 → ∀𝑦𝑥 𝜒))
13 tfinds3.7 . . . 4 (Lim 𝑥 → (𝜂 → (∀𝑦𝑥 𝜒𝜑)))
1413a2d 29 . . 3 (Lim 𝑥 → ((𝜂 → ∀𝑦𝑥 𝜒) → (𝜂𝜑)))
1512, 14syl5bi 234 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝜂𝜒) → (𝜂𝜑)))
162, 4, 6, 8, 9, 11, 15tfinds 7390 1 (𝐴 ∈ On → (𝜂𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1507  wcel 2050  wral 3089  c0 4179  Oncon0 6029  Lim wlim 6030  suc csuc 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-tr 5031  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035
This theorem is referenced by:  oacl  7962  omcl  7963  oecl  7964  oawordri  7977  oaass  7988  oarec  7989  omordi  7993  omwordri  7999  odi  8006  omass  8007  oen0  8013  oewordri  8019  oeworde  8020  oeoelem  8025  omabs  8074  tfindsd  39936
  Copyright terms: Public domain W3C validator