MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds3 Structured version   Visualization version   GIF version

Theorem tfinds3 7798
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.)
Hypotheses
Ref Expression
tfinds3.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds3.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds3.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds3.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfinds3.5 (𝜂𝜓)
tfinds3.6 (𝑦 ∈ On → (𝜂 → (𝜒𝜃)))
tfinds3.7 (Lim 𝑥 → (𝜂 → (∀𝑦𝑥 𝜒𝜑)))
Assertion
Ref Expression
tfinds3 (𝐴 ∈ On → (𝜂𝜏))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑦   𝜒,𝑥   𝜏,𝑥   𝑥,𝑦,𝜂
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfinds3
StepHypRef Expression
1 tfinds3.1 . . 3 (𝑥 = ∅ → (𝜑𝜓))
21imbi2d 340 . 2 (𝑥 = ∅ → ((𝜂𝜑) ↔ (𝜂𝜓)))
3 tfinds3.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
43imbi2d 340 . 2 (𝑥 = 𝑦 → ((𝜂𝜑) ↔ (𝜂𝜒)))
5 tfinds3.3 . . 3 (𝑥 = suc 𝑦 → (𝜑𝜃))
65imbi2d 340 . 2 (𝑥 = suc 𝑦 → ((𝜂𝜑) ↔ (𝜂𝜃)))
7 tfinds3.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
87imbi2d 340 . 2 (𝑥 = 𝐴 → ((𝜂𝜑) ↔ (𝜂𝜏)))
9 tfinds3.5 . 2 (𝜂𝜓)
10 tfinds3.6 . . 3 (𝑦 ∈ On → (𝜂 → (𝜒𝜃)))
1110a2d 29 . 2 (𝑦 ∈ On → ((𝜂𝜒) → (𝜂𝜃)))
12 r19.21v 3154 . . 3 (∀𝑦𝑥 (𝜂𝜒) ↔ (𝜂 → ∀𝑦𝑥 𝜒))
13 tfinds3.7 . . . 4 (Lim 𝑥 → (𝜂 → (∀𝑦𝑥 𝜒𝜑)))
1413a2d 29 . . 3 (Lim 𝑥 → ((𝜂 → ∀𝑦𝑥 𝜒) → (𝜂𝜑)))
1512, 14biimtrid 242 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝜂𝜒) → (𝜂𝜑)))
162, 4, 6, 8, 9, 11, 15tfinds 7793 1 (𝐴 ∈ On → (𝜂𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  c0 4284  Oncon0 6307  Lim wlim 6308  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313
This theorem is referenced by:  oacl  8453  omcl  8454  oecl  8455  oawordri  8468  oaass  8479  oarec  8480  omordi  8484  omwordri  8490  odi  8497  omass  8498  oen0  8504  oewordri  8510  oeworde  8511  oeoelem  8516  omabs  8569  tfindsd  44193
  Copyright terms: Public domain W3C validator