Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tfinds3 | Structured version Visualization version GIF version |
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.) |
Ref | Expression |
---|---|
tfinds3.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
tfinds3.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
tfinds3.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
tfinds3.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
tfinds3.5 | ⊢ (𝜂 → 𝜓) |
tfinds3.6 | ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) |
tfinds3.7 | ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) |
Ref | Expression |
---|---|
tfinds3 | ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfinds3.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
2 | 1 | imbi2d 340 | . 2 ⊢ (𝑥 = ∅ → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜓))) |
3 | tfinds3.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
4 | 3 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜒))) |
5 | tfinds3.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
6 | 5 | imbi2d 340 | . 2 ⊢ (𝑥 = suc 𝑦 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜃))) |
7 | tfinds3.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
8 | 7 | imbi2d 340 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜂 → 𝜑) ↔ (𝜂 → 𝜏))) |
9 | tfinds3.5 | . 2 ⊢ (𝜂 → 𝜓) | |
10 | tfinds3.6 | . . 3 ⊢ (𝑦 ∈ On → (𝜂 → (𝜒 → 𝜃))) | |
11 | 10 | a2d 29 | . 2 ⊢ (𝑦 ∈ On → ((𝜂 → 𝜒) → (𝜂 → 𝜃))) |
12 | r19.21v 3100 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) ↔ (𝜂 → ∀𝑦 ∈ 𝑥 𝜒)) | |
13 | tfinds3.7 | . . . 4 ⊢ (Lim 𝑥 → (𝜂 → (∀𝑦 ∈ 𝑥 𝜒 → 𝜑))) | |
14 | 13 | a2d 29 | . . 3 ⊢ (Lim 𝑥 → ((𝜂 → ∀𝑦 ∈ 𝑥 𝜒) → (𝜂 → 𝜑))) |
15 | 12, 14 | syl5bi 241 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (𝜂 → 𝜒) → (𝜂 → 𝜑))) |
16 | 2, 4, 6, 8, 9, 11, 15 | tfinds 7681 | 1 ⊢ (𝐴 ∈ On → (𝜂 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∅c0 4253 Oncon0 6251 Lim wlim 6252 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 |
This theorem is referenced by: oacl 8327 omcl 8328 oecl 8329 oawordri 8343 oaass 8354 oarec 8355 omordi 8359 omwordri 8365 odi 8372 omass 8373 oen0 8379 oewordri 8385 oeworde 8386 oeoelem 8391 omabs 8441 tfindsd 41712 |
Copyright terms: Public domain | W3C validator |