MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds3 Structured version   Visualization version   GIF version

Theorem tfinds3 7860
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.)
Hypotheses
Ref Expression
tfinds3.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds3.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds3.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds3.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfinds3.5 (𝜂𝜓)
tfinds3.6 (𝑦 ∈ On → (𝜂 → (𝜒𝜃)))
tfinds3.7 (Lim 𝑥 → (𝜂 → (∀𝑦𝑥 𝜒𝜑)))
Assertion
Ref Expression
tfinds3 (𝐴 ∈ On → (𝜂𝜏))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑦   𝜒,𝑥   𝜏,𝑥   𝑥,𝑦,𝜂
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfinds3
StepHypRef Expression
1 tfinds3.1 . . 3 (𝑥 = ∅ → (𝜑𝜓))
21imbi2d 340 . 2 (𝑥 = ∅ → ((𝜂𝜑) ↔ (𝜂𝜓)))
3 tfinds3.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
43imbi2d 340 . 2 (𝑥 = 𝑦 → ((𝜂𝜑) ↔ (𝜂𝜒)))
5 tfinds3.3 . . 3 (𝑥 = suc 𝑦 → (𝜑𝜃))
65imbi2d 340 . 2 (𝑥 = suc 𝑦 → ((𝜂𝜑) ↔ (𝜂𝜃)))
7 tfinds3.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
87imbi2d 340 . 2 (𝑥 = 𝐴 → ((𝜂𝜑) ↔ (𝜂𝜏)))
9 tfinds3.5 . 2 (𝜂𝜓)
10 tfinds3.6 . . 3 (𝑦 ∈ On → (𝜂 → (𝜒𝜃)))
1110a2d 29 . 2 (𝑦 ∈ On → ((𝜂𝜒) → (𝜂𝜃)))
12 r19.21v 3165 . . 3 (∀𝑦𝑥 (𝜂𝜒) ↔ (𝜂 → ∀𝑦𝑥 𝜒))
13 tfinds3.7 . . . 4 (Lim 𝑥 → (𝜂 → (∀𝑦𝑥 𝜒𝜑)))
1413a2d 29 . . 3 (Lim 𝑥 → ((𝜂 → ∀𝑦𝑥 𝜒) → (𝜂𝜑)))
1512, 14biimtrid 242 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝜂𝜒) → (𝜂𝜑)))
162, 4, 6, 8, 9, 11, 15tfinds 7855 1 (𝐴 ∈ On → (𝜂𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3051  c0 4308  Oncon0 6352  Lim wlim 6353  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358
This theorem is referenced by:  oacl  8547  omcl  8548  oecl  8549  oawordri  8562  oaass  8573  oarec  8574  omordi  8578  omwordri  8584  odi  8591  omass  8592  oen0  8598  oewordri  8604  oeworde  8605  oeoelem  8610  omabs  8663  tfindsd  44234
  Copyright terms: Public domain W3C validator