MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds3 Structured version   Visualization version   GIF version

Theorem tfinds3 7885
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.)
Hypotheses
Ref Expression
tfinds3.1 (𝑥 = ∅ → (𝜑𝜓))
tfinds3.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfinds3.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfinds3.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfinds3.5 (𝜂𝜓)
tfinds3.6 (𝑦 ∈ On → (𝜂 → (𝜒𝜃)))
tfinds3.7 (Lim 𝑥 → (𝜂 → (∀𝑦𝑥 𝜒𝜑)))
Assertion
Ref Expression
tfinds3 (𝐴 ∈ On → (𝜂𝜏))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑦   𝜒,𝑥   𝜏,𝑥   𝑥,𝑦,𝜂
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfinds3
StepHypRef Expression
1 tfinds3.1 . . 3 (𝑥 = ∅ → (𝜑𝜓))
21imbi2d 340 . 2 (𝑥 = ∅ → ((𝜂𝜑) ↔ (𝜂𝜓)))
3 tfinds3.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
43imbi2d 340 . 2 (𝑥 = 𝑦 → ((𝜂𝜑) ↔ (𝜂𝜒)))
5 tfinds3.3 . . 3 (𝑥 = suc 𝑦 → (𝜑𝜃))
65imbi2d 340 . 2 (𝑥 = suc 𝑦 → ((𝜂𝜑) ↔ (𝜂𝜃)))
7 tfinds3.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
87imbi2d 340 . 2 (𝑥 = 𝐴 → ((𝜂𝜑) ↔ (𝜂𝜏)))
9 tfinds3.5 . 2 (𝜂𝜓)
10 tfinds3.6 . . 3 (𝑦 ∈ On → (𝜂 → (𝜒𝜃)))
1110a2d 29 . 2 (𝑦 ∈ On → ((𝜂𝜒) → (𝜂𝜃)))
12 r19.21v 3177 . . 3 (∀𝑦𝑥 (𝜂𝜒) ↔ (𝜂 → ∀𝑦𝑥 𝜒))
13 tfinds3.7 . . . 4 (Lim 𝑥 → (𝜂 → (∀𝑦𝑥 𝜒𝜑)))
1413a2d 29 . . 3 (Lim 𝑥 → ((𝜂 → ∀𝑦𝑥 𝜒) → (𝜂𝜑)))
1512, 14biimtrid 242 . 2 (Lim 𝑥 → (∀𝑦𝑥 (𝜂𝜒) → (𝜂𝜑)))
162, 4, 6, 8, 9, 11, 15tfinds 7880 1 (𝐴 ∈ On → (𝜂𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  wral 3058  c0 4338  Oncon0 6385  Lim wlim 6386  suc csuc 6387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391
This theorem is referenced by:  oacl  8571  omcl  8572  oecl  8573  oawordri  8586  oaass  8597  oarec  8598  omordi  8602  omwordri  8608  odi  8615  omass  8616  oen0  8622  oewordri  8628  oeworde  8629  oeoelem  8634  omabs  8687  tfindsd  44200
  Copyright terms: Public domain W3C validator