![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnssp | Structured version Visualization version GIF version |
Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tglngval.z | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Ref | Expression |
---|---|
tglnssp | ⊢ (𝜑 → (𝑋𝐿𝑌) ⊆ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglngval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
6 | tglngval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
7 | tglngval.z | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tglngval 26039 | . 2 ⊢ (𝜑 → (𝑋𝐿𝑌) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))}) |
9 | ssrab2 3947 | . 2 ⊢ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ⊆ 𝑃 | |
10 | 8, 9 | syl6eqss 3912 | 1 ⊢ (𝜑 → (𝑋𝐿𝑌) ⊆ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1067 = wceq 1507 ∈ wcel 2050 ≠ wne 2968 {crab 3093 ⊆ wss 3830 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 TarskiGcstrkg 25918 Itvcitv 25924 LineGclng 25925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3418 df-sbc 3683 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-iota 6152 df-fun 6190 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-trkg 25941 |
This theorem is referenced by: tglineelsb2 26120 tglinecom 26123 |
Copyright terms: Public domain | W3C validator |