MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnssp Structured version   Visualization version   GIF version

Theorem tglnssp 27800
Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Baseβ€˜πΊ)
tglngval.l 𝐿 = (LineGβ€˜πΊ)
tglngval.i 𝐼 = (Itvβ€˜πΊ)
tglngval.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglngval.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
tglngval.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
tglngval.z (πœ‘ β†’ 𝑋 β‰  π‘Œ)
Assertion
Ref Expression
tglnssp (πœ‘ β†’ (π‘‹πΏπ‘Œ) βŠ† 𝑃)

Proof of Theorem tglnssp
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tglngval.p . . 3 𝑃 = (Baseβ€˜πΊ)
2 tglngval.l . . 3 𝐿 = (LineGβ€˜πΊ)
3 tglngval.i . . 3 𝐼 = (Itvβ€˜πΊ)
4 tglngval.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
5 tglngval.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑃)
6 tglngval.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑃)
7 tglngval.z . . 3 (πœ‘ β†’ 𝑋 β‰  π‘Œ)
81, 2, 3, 4, 5, 6, 7tglngval 27799 . 2 (πœ‘ β†’ (π‘‹πΏπ‘Œ) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))})
9 ssrab2 4077 . 2 {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))} βŠ† 𝑃
108, 9eqsstrdi 4036 1 (πœ‘ β†’ (π‘‹πΏπ‘Œ) βŠ† 𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∨ w3o 1086   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  TarskiGcstrkg 27675  Itvcitv 27681  LineGclng 27682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-trkg 27701
This theorem is referenced by:  tglineelsb2  27880  tglinecom  27883
  Copyright terms: Public domain W3C validator