![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnssp | Structured version Visualization version GIF version |
Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglngval.p | β’ π = (BaseβπΊ) |
tglngval.l | β’ πΏ = (LineGβπΊ) |
tglngval.i | β’ πΌ = (ItvβπΊ) |
tglngval.g | β’ (π β πΊ β TarskiG) |
tglngval.x | β’ (π β π β π) |
tglngval.y | β’ (π β π β π) |
tglngval.z | β’ (π β π β π) |
Ref | Expression |
---|---|
tglnssp | β’ (π β (ππΏπ) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . . 3 β’ π = (BaseβπΊ) | |
2 | tglngval.l | . . 3 β’ πΏ = (LineGβπΊ) | |
3 | tglngval.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | tglngval.g | . . 3 β’ (π β πΊ β TarskiG) | |
5 | tglngval.x | . . 3 β’ (π β π β π) | |
6 | tglngval.y | . . 3 β’ (π β π β π) | |
7 | tglngval.z | . . 3 β’ (π β π β π) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tglngval 28306 | . 2 β’ (π β (ππΏπ) = {π§ β π β£ (π§ β (ππΌπ) β¨ π β (π§πΌπ) β¨ π β (ππΌπ§))}) |
9 | ssrab2 4072 | . 2 β’ {π§ β π β£ (π§ β (ππΌπ) β¨ π β (π§πΌπ) β¨ π β (ππΌπ§))} β π | |
10 | 8, 9 | eqsstrdi 4031 | 1 β’ (π β (ππΏπ) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ w3o 1083 = wceq 1533 β wcel 2098 β wne 2934 {crab 3426 β wss 3943 βcfv 6536 (class class class)co 7404 Basecbs 17151 TarskiGcstrkg 28182 Itvcitv 28188 LineGclng 28189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-trkg 28208 |
This theorem is referenced by: tglineelsb2 28387 tglinecom 28390 |
Copyright terms: Public domain | W3C validator |