| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnssp | Structured version Visualization version GIF version | ||
| Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tglngval.z | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| Ref | Expression |
|---|---|
| tglnssp | ⊢ (𝜑 → (𝑋𝐿𝑌) ⊆ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tglngval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tglngval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 6 | tglngval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 7 | tglngval.z | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | tglngval 28478 | . 2 ⊢ (𝜑 → (𝑋𝐿𝑌) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))}) |
| 9 | ssrab2 4043 | . 2 ⊢ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ⊆ 𝑃 | |
| 10 | 8, 9 | eqsstrdi 3991 | 1 ⊢ (𝜑 → (𝑋𝐿𝑌) ⊆ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3405 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-trkg 28380 |
| This theorem is referenced by: tglineelsb2 28559 tglinecom 28562 |
| Copyright terms: Public domain | W3C validator |