![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglnssp | Structured version Visualization version GIF version |
Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tglngval.z | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
Ref | Expression |
---|---|
tglnssp | ⊢ (𝜑 → (𝑋𝐿𝑌) ⊆ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | tglngval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | tglngval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
6 | tglngval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
7 | tglngval.z | . . 3 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
8 | 1, 2, 3, 4, 5, 6, 7 | tglngval 28375 | . 2 ⊢ (𝜑 → (𝑋𝐿𝑌) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))}) |
9 | ssrab2 4077 | . 2 ⊢ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ⊆ 𝑃 | |
10 | 8, 9 | eqsstrdi 4036 | 1 ⊢ (𝜑 → (𝑋𝐿𝑌) ⊆ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 {crab 3430 ⊆ wss 3949 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 TarskiGcstrkg 28251 Itvcitv 28257 LineGclng 28258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-trkg 28277 |
This theorem is referenced by: tglineelsb2 28456 tglinecom 28459 |
Copyright terms: Public domain | W3C validator |