MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineelsb2 Structured version   Visualization version   GIF version

Theorem tglineelsb2 25983
Description: If 𝑆 lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
tglineelsb2.3 (𝜑𝑆𝐵)
tglineelsb2.5 (𝜑𝑆𝑃)
tglineelsb2.6 (𝜑𝑆 ∈ (𝑃𝐿𝑄))
Assertion
Ref Expression
tglineelsb2 (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆))

Proof of Theorem tglineelsb2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . 4 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . 4 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG)
6 tglineelsb2.1 . . . . 5 (𝜑𝑃𝐵)
76adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃𝐵)
8 tglineelsb2.3 . . . . 5 (𝜑𝑆𝐵)
98adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆𝐵)
10 tglineelsb2.5 . . . . . 6 (𝜑𝑆𝑃)
1110necomd 3024 . . . . 5 (𝜑𝑃𝑆)
1211adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃𝑆)
13 tglineelsb2.2 . . . . 5 (𝜑𝑄𝐵)
1413adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄𝐵)
15 tglineelsb2.4 . . . . . 6 (𝜑𝑃𝑄)
1615necomd 3024 . . . . 5 (𝜑𝑄𝑃)
1716adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄𝑃)
18 tglineelsb2.6 . . . . . . 7 (𝜑𝑆 ∈ (𝑃𝐿𝑄))
1918adantr 474 . . . . . 6 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ (𝑃𝐿𝑄))
201, 2, 3, 5, 14, 7, 9, 17, 19lncom 25973 . . . . 5 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ (𝑄𝐿𝑃))
211, 2, 3, 5, 7, 9, 14, 12, 20, 17lnrot1 25974 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ (𝑃𝐿𝑆))
221, 3, 2, 4, 6, 13, 15tglnssp 25903 . . . . 5 (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵)
2322sselda 3821 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥𝐵)
24 simpr 479 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄))
251, 2, 3, 5, 7, 9, 12, 14, 17, 21, 23, 24tglineeltr 25982 . . 3 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑆))
264adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝐺 ∈ TarskiG)
276adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑃𝐵)
2813adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑄𝐵)
2915adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑃𝑄)
308adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆𝐵)
3110adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆𝑃)
3218adantr 474 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆 ∈ (𝑃𝐿𝑄))
331, 3, 2, 4, 6, 8, 11tglnssp 25903 . . . . 5 (𝜑 → (𝑃𝐿𝑆) ⊆ 𝐵)
3433sselda 3821 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥𝐵)
35 simpr 479 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ (𝑃𝐿𝑆))
361, 2, 3, 26, 27, 28, 29, 30, 31, 32, 34, 35tglineeltr 25982 . . 3 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ (𝑃𝐿𝑄))
3725, 36impbida 791 . 2 (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑃𝐿𝑆)))
3837eqrdv 2776 1 (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  cfv 6135  (class class class)co 6922  Basecbs 16255  TarskiGcstrkg 25781  Itvcitv 25787  LineGclng 25788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-concat 13661  df-s1 13686  df-s2 13999  df-s3 14000  df-trkgc 25799  df-trkgb 25800  df-trkgcb 25801  df-trkg 25804  df-cgrg 25862
This theorem is referenced by:  tglinethru  25987  ncolncol  25997  coltr3  25999  hlperpnel  26073  colperpexlem3  26080  mideulem2  26082  lmieu  26132  lmiisolem  26144
  Copyright terms: Public domain W3C validator