![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglineelsb2 | Structured version Visualization version GIF version |
Description: If 𝑆 lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
tglineelsb2.3 | ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
tglineelsb2.5 | ⊢ (𝜑 → 𝑆 ≠ 𝑃) |
tglineelsb2.6 | ⊢ (𝜑 → 𝑆 ∈ (𝑃𝐿𝑄)) |
Ref | Expression |
---|---|
tglineelsb2 | ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG) |
6 | tglineelsb2.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
7 | 6 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃 ∈ 𝐵) |
8 | tglineelsb2.3 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
9 | 8 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ 𝐵) |
10 | tglineelsb2.5 | . . . . . 6 ⊢ (𝜑 → 𝑆 ≠ 𝑃) | |
11 | 10 | necomd 2985 | . . . . 5 ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
12 | 11 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃 ≠ 𝑆) |
13 | tglineelsb2.2 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
14 | 13 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ 𝐵) |
15 | tglineelsb2.4 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
16 | 15 | necomd 2985 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑃) |
17 | 16 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ≠ 𝑃) |
18 | tglineelsb2.6 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (𝑃𝐿𝑄)) | |
19 | 18 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ (𝑃𝐿𝑄)) |
20 | 1, 2, 3, 5, 14, 7, 9, 17, 19 | lncom 28541 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ (𝑄𝐿𝑃)) |
21 | 1, 2, 3, 5, 7, 9, 14, 12, 20, 17 | lnrot1 28542 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ (𝑃𝐿𝑆)) |
22 | 1, 3, 2, 4, 6, 13, 15 | tglnssp 28471 | . . . . 5 ⊢ (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵) |
23 | 22 | sselda 3978 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ 𝐵) |
24 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄)) | |
25 | 1, 2, 3, 5, 7, 9, 12, 14, 17, 21, 23, 24 | tglineeltr 28550 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑆)) |
26 | 4 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝐺 ∈ TarskiG) |
27 | 6 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑃 ∈ 𝐵) |
28 | 13 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑄 ∈ 𝐵) |
29 | 15 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑃 ≠ 𝑄) |
30 | 8 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆 ∈ 𝐵) |
31 | 10 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆 ≠ 𝑃) |
32 | 18 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆 ∈ (𝑃𝐿𝑄)) |
33 | 1, 3, 2, 4, 6, 8, 11 | tglnssp 28471 | . . . . 5 ⊢ (𝜑 → (𝑃𝐿𝑆) ⊆ 𝐵) |
34 | 33 | sselda 3978 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ 𝐵) |
35 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ (𝑃𝐿𝑆)) | |
36 | 1, 2, 3, 26, 27, 28, 29, 30, 31, 32, 34, 35 | tglineeltr 28550 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ (𝑃𝐿𝑄)) |
37 | 25, 36 | impbida 799 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑃𝐿𝑆))) |
38 | 37 | eqrdv 2723 | 1 ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ‘cfv 6553 (class class class)co 7423 Basecbs 17208 TarskiGcstrkg 28346 Itvcitv 28352 LineGclng 28353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-oadd 8499 df-er 8733 df-pm 8857 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-dju 9940 df-card 9978 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-n0 12520 df-xnn0 12592 df-z 12606 df-uz 12870 df-fz 13534 df-fzo 13677 df-hash 14343 df-word 14518 df-concat 14574 df-s1 14599 df-s2 14852 df-s3 14853 df-trkgc 28367 df-trkgb 28368 df-trkgcb 28369 df-trkg 28372 df-cgrg 28430 |
This theorem is referenced by: tglinethru 28555 ncolncol 28565 coltr3 28567 hlperpnel 28644 colperpexlem3 28651 mideulem2 28653 lmieu 28703 lmiisolem 28715 |
Copyright terms: Public domain | W3C validator |