![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglineelsb2 | Structured version Visualization version GIF version |
Description: If π lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
tglineelsb2.1 | β’ (π β π β π΅) |
tglineelsb2.2 | β’ (π β π β π΅) |
tglineelsb2.4 | β’ (π β π β π) |
tglineelsb2.3 | β’ (π β π β π΅) |
tglineelsb2.5 | β’ (π β π β π) |
tglineelsb2.6 | β’ (π β π β (ππΏπ)) |
Ref | Expression |
---|---|
tglineelsb2 | β’ (π β (ππΏπ) = (ππΏπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . 4 β’ π΅ = (BaseβπΊ) | |
2 | tglineelsb2.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
3 | tglineelsb2.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
4 | tglineelsb2.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
5 | 4 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β πΊ β TarskiG) |
6 | tglineelsb2.1 | . . . . 5 β’ (π β π β π΅) | |
7 | 6 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
8 | tglineelsb2.3 | . . . . 5 β’ (π β π β π΅) | |
9 | 8 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
10 | tglineelsb2.5 | . . . . . 6 β’ (π β π β π) | |
11 | 10 | necomd 2997 | . . . . 5 β’ (π β π β π) |
12 | 11 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
13 | tglineelsb2.2 | . . . . 5 β’ (π β π β π΅) | |
14 | 13 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
15 | tglineelsb2.4 | . . . . . 6 β’ (π β π β π) | |
16 | 15 | necomd 2997 | . . . . 5 β’ (π β π β π) |
17 | 16 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
18 | tglineelsb2.6 | . . . . . . 7 β’ (π β π β (ππΏπ)) | |
19 | 18 | adantr 482 | . . . . . 6 β’ ((π β§ π₯ β (ππΏπ)) β π β (ππΏπ)) |
20 | 1, 2, 3, 5, 14, 7, 9, 17, 19 | lncom 27873 | . . . . 5 β’ ((π β§ π₯ β (ππΏπ)) β π β (ππΏπ)) |
21 | 1, 2, 3, 5, 7, 9, 14, 12, 20, 17 | lnrot1 27874 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β (ππΏπ)) |
22 | 1, 3, 2, 4, 6, 13, 15 | tglnssp 27803 | . . . . 5 β’ (π β (ππΏπ) β π΅) |
23 | 22 | sselda 3983 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β π΅) |
24 | simpr 486 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) | |
25 | 1, 2, 3, 5, 7, 9, 12, 14, 17, 21, 23, 24 | tglineeltr 27882 | . . 3 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) |
26 | 4 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β πΊ β TarskiG) |
27 | 6 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
28 | 13 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
29 | 15 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
30 | 8 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
31 | 10 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
32 | 18 | adantr 482 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β (ππΏπ)) |
33 | 1, 3, 2, 4, 6, 8, 11 | tglnssp 27803 | . . . . 5 β’ (π β (ππΏπ) β π΅) |
34 | 33 | sselda 3983 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β π΅) |
35 | simpr 486 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) | |
36 | 1, 2, 3, 26, 27, 28, 29, 30, 31, 32, 34, 35 | tglineeltr 27882 | . . 3 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) |
37 | 25, 36 | impbida 800 | . 2 β’ (π β (π₯ β (ππΏπ) β π₯ β (ππΏπ))) |
38 | 37 | eqrdv 2731 | 1 β’ (π β (ππΏπ) = (ππΏπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 βcfv 6544 (class class class)co 7409 Basecbs 17144 TarskiGcstrkg 27678 Itvcitv 27684 LineGclng 27685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-concat 14521 df-s1 14546 df-s2 14799 df-s3 14800 df-trkgc 27699 df-trkgb 27700 df-trkgcb 27701 df-trkg 27704 df-cgrg 27762 |
This theorem is referenced by: tglinethru 27887 ncolncol 27897 coltr3 27899 hlperpnel 27976 colperpexlem3 27983 mideulem2 27985 lmieu 28035 lmiisolem 28047 |
Copyright terms: Public domain | W3C validator |