![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglineelsb2 | Structured version Visualization version GIF version |
Description: If π lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
tglineelsb2.1 | β’ (π β π β π΅) |
tglineelsb2.2 | β’ (π β π β π΅) |
tglineelsb2.4 | β’ (π β π β π) |
tglineelsb2.3 | β’ (π β π β π΅) |
tglineelsb2.5 | β’ (π β π β π) |
tglineelsb2.6 | β’ (π β π β (ππΏπ)) |
Ref | Expression |
---|---|
tglineelsb2 | β’ (π β (ππΏπ) = (ππΏπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . 4 β’ π΅ = (BaseβπΊ) | |
2 | tglineelsb2.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
3 | tglineelsb2.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
4 | tglineelsb2.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
5 | 4 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β πΊ β TarskiG) |
6 | tglineelsb2.1 | . . . . 5 β’ (π β π β π΅) | |
7 | 6 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
8 | tglineelsb2.3 | . . . . 5 β’ (π β π β π΅) | |
9 | 8 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
10 | tglineelsb2.5 | . . . . . 6 β’ (π β π β π) | |
11 | 10 | necomd 2986 | . . . . 5 β’ (π β π β π) |
12 | 11 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
13 | tglineelsb2.2 | . . . . 5 β’ (π β π β π΅) | |
14 | 13 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
15 | tglineelsb2.4 | . . . . . 6 β’ (π β π β π) | |
16 | 15 | necomd 2986 | . . . . 5 β’ (π β π β π) |
17 | 16 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
18 | tglineelsb2.6 | . . . . . . 7 β’ (π β π β (ππΏπ)) | |
19 | 18 | adantr 479 | . . . . . 6 β’ ((π β§ π₯ β (ππΏπ)) β π β (ππΏπ)) |
20 | 1, 2, 3, 5, 14, 7, 9, 17, 19 | lncom 28468 | . . . . 5 β’ ((π β§ π₯ β (ππΏπ)) β π β (ππΏπ)) |
21 | 1, 2, 3, 5, 7, 9, 14, 12, 20, 17 | lnrot1 28469 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β (ππΏπ)) |
22 | 1, 3, 2, 4, 6, 13, 15 | tglnssp 28398 | . . . . 5 β’ (π β (ππΏπ) β π΅) |
23 | 22 | sselda 3972 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β π΅) |
24 | simpr 483 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) | |
25 | 1, 2, 3, 5, 7, 9, 12, 14, 17, 21, 23, 24 | tglineeltr 28477 | . . 3 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) |
26 | 4 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β πΊ β TarskiG) |
27 | 6 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
28 | 13 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
29 | 15 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
30 | 8 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
31 | 10 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
32 | 18 | adantr 479 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β (ππΏπ)) |
33 | 1, 3, 2, 4, 6, 8, 11 | tglnssp 28398 | . . . . 5 β’ (π β (ππΏπ) β π΅) |
34 | 33 | sselda 3972 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β π΅) |
35 | simpr 483 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) | |
36 | 1, 2, 3, 26, 27, 28, 29, 30, 31, 32, 34, 35 | tglineeltr 28477 | . . 3 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) |
37 | 25, 36 | impbida 799 | . 2 β’ (π β (π₯ β (ππΏπ) β π₯ β (ππΏπ))) |
38 | 37 | eqrdv 2723 | 1 β’ (π β (ππΏπ) = (ππΏπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 βcfv 6542 (class class class)co 7415 Basecbs 17177 TarskiGcstrkg 28273 Itvcitv 28279 LineGclng 28280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-er 8721 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13515 df-fzo 13658 df-hash 14320 df-word 14495 df-concat 14551 df-s1 14576 df-s2 14829 df-s3 14830 df-trkgc 28294 df-trkgb 28295 df-trkgcb 28296 df-trkg 28299 df-cgrg 28357 |
This theorem is referenced by: tglinethru 28482 ncolncol 28492 coltr3 28494 hlperpnel 28571 colperpexlem3 28578 mideulem2 28580 lmieu 28630 lmiisolem 28642 |
Copyright terms: Public domain | W3C validator |