MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineelsb2 Structured version   Visualization version   GIF version

Theorem tglineelsb2 25747
Description: If 𝑆 lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
tglineelsb2.3 (𝜑𝑆𝐵)
tglineelsb2.5 (𝜑𝑆𝑃)
tglineelsb2.6 (𝜑𝑆 ∈ (𝑃𝐿𝑄))
Assertion
Ref Expression
tglineelsb2 (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆))

Proof of Theorem tglineelsb2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . 4 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . 4 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG)
6 tglineelsb2.1 . . . . 5 (𝜑𝑃𝐵)
76adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃𝐵)
8 tglineelsb2.3 . . . . 5 (𝜑𝑆𝐵)
98adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆𝐵)
10 tglineelsb2.5 . . . . . 6 (𝜑𝑆𝑃)
1110necomd 2998 . . . . 5 (𝜑𝑃𝑆)
1211adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃𝑆)
13 tglineelsb2.2 . . . . 5 (𝜑𝑄𝐵)
1413adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄𝐵)
15 tglineelsb2.4 . . . . . 6 (𝜑𝑃𝑄)
1615necomd 2998 . . . . 5 (𝜑𝑄𝑃)
1716adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄𝑃)
18 tglineelsb2.6 . . . . . . 7 (𝜑𝑆 ∈ (𝑃𝐿𝑄))
1918adantr 466 . . . . . 6 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ (𝑃𝐿𝑄))
201, 2, 3, 5, 14, 7, 9, 17, 19lncom 25737 . . . . 5 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ (𝑄𝐿𝑃))
211, 2, 3, 5, 7, 9, 14, 12, 20, 17lnrot1 25738 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ (𝑃𝐿𝑆))
221, 3, 2, 4, 6, 13, 15tglnssp 25667 . . . . 5 (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵)
2322sselda 3752 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥𝐵)
24 simpr 471 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄))
251, 2, 3, 5, 7, 9, 12, 14, 17, 21, 23, 24tglineeltr 25746 . . 3 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑆))
264adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝐺 ∈ TarskiG)
276adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑃𝐵)
2813adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑄𝐵)
2915adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑃𝑄)
308adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆𝐵)
3110adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆𝑃)
3218adantr 466 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆 ∈ (𝑃𝐿𝑄))
331, 3, 2, 4, 6, 8, 11tglnssp 25667 . . . . 5 (𝜑 → (𝑃𝐿𝑆) ⊆ 𝐵)
3433sselda 3752 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥𝐵)
35 simpr 471 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ (𝑃𝐿𝑆))
361, 2, 3, 26, 27, 28, 29, 30, 31, 32, 34, 35tglineeltr 25746 . . 3 ((𝜑𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ (𝑃𝐿𝑄))
3725, 36impbida 794 . 2 (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑃𝐿𝑆)))
3837eqrdv 2769 1 (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  cfv 6031  (class class class)co 6792  Basecbs 16063  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-concat 13496  df-s1 13497  df-s2 13801  df-s3 13802  df-trkgc 25567  df-trkgb 25568  df-trkgcb 25569  df-trkg 25572  df-cgrg 25626
This theorem is referenced by:  tglinethru  25751  ncolncol  25761  coltr3  25763  hlperpnel  25837  colperpexlem3  25844  mideulem2  25846  lmieu  25896  lmiisolem  25908
  Copyright terms: Public domain W3C validator