Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngval Structured version   Visualization version   GIF version

Theorem tglngval 26355
 Description: The line going through points 𝑋 and 𝑌. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tglngval.z (𝜑𝑋𝑌)
Assertion
Ref Expression
tglngval (𝜑 → (𝑋𝐿𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
Distinct variable groups:   𝑧,𝐺   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,𝑌   𝜑,𝑧
Allowed substitution hint:   𝐿(𝑧)

Proof of Theorem tglngval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
3 tglngval.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
52, 3, 4tglng 26350 . . . 4 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
61, 5syl 17 . . 3 (𝜑𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
76oveqd 7153 . 2 (𝜑 → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌))
8 tglngval.x . . 3 (𝜑𝑋𝑃)
9 tglngval.y . . . 4 (𝜑𝑌𝑃)
10 tglngval.z . . . . 5 (𝜑𝑋𝑌)
1110necomd 3042 . . . 4 (𝜑𝑌𝑋)
12 eldifsn 4680 . . . 4 (𝑌 ∈ (𝑃 ∖ {𝑋}) ↔ (𝑌𝑃𝑌𝑋))
139, 11, 12sylanbrc 586 . . 3 (𝜑𝑌 ∈ (𝑃 ∖ {𝑋}))
142fvexi 6660 . . . . 5 𝑃 ∈ V
1514rabex 5200 . . . 4 {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V
1615a1i 11 . . 3 (𝜑 → {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V)
17 oveq12 7145 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐼𝑦) = (𝑋𝐼𝑌))
1817eleq2d 2875 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
19 simpl 486 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
20 simpr 488 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
2120oveq2d 7152 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
2219, 21eleq12d 2884 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
2319oveq1d 7151 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2420, 23eleq12d 2884 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
2518, 22, 243orbi123d 1432 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
2625rabbidv 3427 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
27 sneq 4535 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2827difeq2d 4050 . . . 4 (𝑥 = 𝑋 → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
29 eqid 2798 . . . 4 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
3026, 28, 29ovmpox 7284 . . 3 ((𝑋𝑃𝑌 ∈ (𝑃 ∖ {𝑋}) ∧ {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V) → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
318, 13, 16, 30syl3anc 1368 . 2 (𝜑 → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
327, 31eqtrd 2833 1 (𝜑 → (𝑋𝐿𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∨ w3o 1083   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  {crab 3110  Vcvv 3441   ∖ cdif 3878  {csn 4525  ‘cfv 6325  (class class class)co 7136   ∈ cmpo 7138  Basecbs 16478  TarskiGcstrkg 26234  Itvcitv 26240  LineGclng 26241 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-iota 6284  df-fun 6327  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-trkg 26257 This theorem is referenced by:  tglnssp  26356  tgellng  26357  tgisline  26431
 Copyright terms: Public domain W3C validator