MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngval Structured version   Visualization version   GIF version

Theorem tglngval 28310
Description: The line going through points 𝑋 and π‘Œ. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Baseβ€˜πΊ)
tglngval.l 𝐿 = (LineGβ€˜πΊ)
tglngval.i 𝐼 = (Itvβ€˜πΊ)
tglngval.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglngval.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
tglngval.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
tglngval.z (πœ‘ β†’ 𝑋 β‰  π‘Œ)
Assertion
Ref Expression
tglngval (πœ‘ β†’ (π‘‹πΏπ‘Œ) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))})
Distinct variable groups:   𝑧,𝐺   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,π‘Œ   πœ‘,𝑧
Allowed substitution hint:   𝐿(𝑧)

Proof of Theorem tglngval
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglngval.g . . . 4 (πœ‘ β†’ 𝐺 ∈ TarskiG)
2 tglngval.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
3 tglngval.l . . . . 5 𝐿 = (LineGβ€˜πΊ)
4 tglngval.i . . . . 5 𝐼 = (Itvβ€˜πΊ)
52, 3, 4tglng 28305 . . . 4 (𝐺 ∈ TarskiG β†’ 𝐿 = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
61, 5syl 17 . . 3 (πœ‘ β†’ 𝐿 = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}))
76oveqd 7422 . 2 (πœ‘ β†’ (π‘‹πΏπ‘Œ) = (𝑋(π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})π‘Œ))
8 tglngval.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑃)
9 tglngval.y . . . 4 (πœ‘ β†’ π‘Œ ∈ 𝑃)
10 tglngval.z . . . . 5 (πœ‘ β†’ 𝑋 β‰  π‘Œ)
1110necomd 2990 . . . 4 (πœ‘ β†’ π‘Œ β‰  𝑋)
12 eldifsn 4785 . . . 4 (π‘Œ ∈ (𝑃 βˆ– {𝑋}) ↔ (π‘Œ ∈ 𝑃 ∧ π‘Œ β‰  𝑋))
139, 11, 12sylanbrc 582 . . 3 (πœ‘ β†’ π‘Œ ∈ (𝑃 βˆ– {𝑋}))
142fvexi 6899 . . . . 5 𝑃 ∈ V
1514rabex 5325 . . . 4 {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))} ∈ V
1615a1i 11 . . 3 (πœ‘ β†’ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))} ∈ V)
17 oveq12 7414 . . . . . . 7 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯𝐼𝑦) = (π‘‹πΌπ‘Œ))
1817eleq2d 2813 . . . . . 6 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ↔ 𝑧 ∈ (π‘‹πΌπ‘Œ)))
19 simpl 482 . . . . . . 7 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ π‘₯ = 𝑋)
20 simpr 484 . . . . . . . 8 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ 𝑦 = π‘Œ)
2120oveq2d 7421 . . . . . . 7 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (𝑧𝐼𝑦) = (π‘§πΌπ‘Œ))
2219, 21eleq12d 2821 . . . . . 6 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯ ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (π‘§πΌπ‘Œ)))
2319oveq1d 7420 . . . . . . 7 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (π‘₯𝐼𝑧) = (𝑋𝐼𝑧))
2420, 23eleq12d 2821 . . . . . 6 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (𝑦 ∈ (π‘₯𝐼𝑧) ↔ π‘Œ ∈ (𝑋𝐼𝑧)))
2518, 22, 243orbi123d 1431 . . . . 5 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ ((𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))))
2625rabbidv 3434 . . . 4 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))} = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))})
27 sneq 4633 . . . . 5 (π‘₯ = 𝑋 β†’ {π‘₯} = {𝑋})
2827difeq2d 4117 . . . 4 (π‘₯ = 𝑋 β†’ (𝑃 βˆ– {π‘₯}) = (𝑃 βˆ– {𝑋}))
29 eqid 2726 . . . 4 (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))}) = (π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})
3026, 28, 29ovmpox 7557 . . 3 ((𝑋 ∈ 𝑃 ∧ π‘Œ ∈ (𝑃 βˆ– {𝑋}) ∧ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))} ∈ V) β†’ (𝑋(π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})π‘Œ) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))})
318, 13, 16, 30syl3anc 1368 . 2 (πœ‘ β†’ (𝑋(π‘₯ ∈ 𝑃, 𝑦 ∈ (𝑃 βˆ– {π‘₯}) ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))})π‘Œ) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))})
327, 31eqtrd 2766 1 (πœ‘ β†’ (π‘‹πΏπ‘Œ) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∨ w3o 1083   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  {crab 3426  Vcvv 3468   βˆ– cdif 3940  {csn 4623  β€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  Basecbs 17153  TarskiGcstrkg 28186  Itvcitv 28192  LineGclng 28193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6489  df-fun 6539  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-trkg 28212
This theorem is referenced by:  tglnssp  28311  tgellng  28312  tgisline  28386
  Copyright terms: Public domain W3C validator