![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgellng | Structured version Visualization version GIF version |
Description: Property of lying on the line going through points π and π. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation π β (π(LineGβπΊ)π) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
tglngval.p | β’ π = (BaseβπΊ) |
tglngval.l | β’ πΏ = (LineGβπΊ) |
tglngval.i | β’ πΌ = (ItvβπΊ) |
tglngval.g | β’ (π β πΊ β TarskiG) |
tglngval.x | β’ (π β π β π) |
tglngval.y | β’ (π β π β π) |
tglngval.z | β’ (π β π β π) |
tgellng.z | β’ (π β π β π) |
Ref | Expression |
---|---|
tgellng | β’ (π β (π β (ππΏπ) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgellng.z | . 2 β’ (π β π β π) | |
2 | tglngval.p | . . . . 5 β’ π = (BaseβπΊ) | |
3 | tglngval.l | . . . . 5 β’ πΏ = (LineGβπΊ) | |
4 | tglngval.i | . . . . 5 β’ πΌ = (ItvβπΊ) | |
5 | tglngval.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
6 | tglngval.x | . . . . 5 β’ (π β π β π) | |
7 | tglngval.y | . . . . 5 β’ (π β π β π) | |
8 | tglngval.z | . . . . 5 β’ (π β π β π) | |
9 | 2, 3, 4, 5, 6, 7, 8 | tglngval 28057 | . . . 4 β’ (π β (ππΏπ) = {π§ β π β£ (π§ β (ππΌπ) β¨ π β (π§πΌπ) β¨ π β (ππΌπ§))}) |
10 | 9 | eleq2d 2819 | . . 3 β’ (π β (π β (ππΏπ) β π β {π§ β π β£ (π§ β (ππΌπ) β¨ π β (π§πΌπ) β¨ π β (ππΌπ§))})) |
11 | eleq1 2821 | . . . . 5 β’ (π§ = π β (π§ β (ππΌπ) β π β (ππΌπ))) | |
12 | oveq1 7418 | . . . . . 6 β’ (π§ = π β (π§πΌπ) = (ππΌπ)) | |
13 | 12 | eleq2d 2819 | . . . . 5 β’ (π§ = π β (π β (π§πΌπ) β π β (ππΌπ))) |
14 | oveq2 7419 | . . . . . 6 β’ (π§ = π β (ππΌπ§) = (ππΌπ)) | |
15 | 14 | eleq2d 2819 | . . . . 5 β’ (π§ = π β (π β (ππΌπ§) β π β (ππΌπ))) |
16 | 11, 13, 15 | 3orbi123d 1435 | . . . 4 β’ (π§ = π β ((π§ β (ππΌπ) β¨ π β (π§πΌπ) β¨ π β (ππΌπ§)) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
17 | 16 | elrab 3683 | . . 3 β’ (π β {π§ β π β£ (π§ β (ππΌπ) β¨ π β (π§πΌπ) β¨ π β (ππΌπ§))} β (π β π β§ (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
18 | 10, 17 | bitrdi 286 | . 2 β’ (π β (π β (ππΏπ) β (π β π β§ (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))))) |
19 | 1, 18 | mpbirand 705 | 1 β’ (π β (π β (ππΏπ) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β¨ w3o 1086 = wceq 1541 β wcel 2106 β wne 2940 {crab 3432 βcfv 6543 (class class class)co 7411 Basecbs 17148 TarskiGcstrkg 27933 Itvcitv 27939 LineGclng 27940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-trkg 27959 |
This theorem is referenced by: tgcolg 28060 hlln 28113 lnhl 28121 btwnlng1 28125 btwnlng2 28126 btwnlng3 28127 lncom 28128 lnrot1 28129 lnrot2 28130 tglineeltr 28137 colmid 28194 cgracol 28334 |
Copyright terms: Public domain | W3C validator |