![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgellng | Structured version Visualization version GIF version |
Description: Property of lying on the line going through points 𝑋 and 𝑌. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation 𝑍 ∈ (𝑋(LineG‘𝐺)𝑌) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tglngval.z | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
tgellng.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
Ref | Expression |
---|---|
tgellng | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgellng.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
2 | tglngval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglngval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglngval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
8 | tglngval.z | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
9 | 2, 3, 4, 5, 6, 7, 8 | tglngval 26019 | . . . 4 ⊢ (𝜑 → (𝑋𝐿𝑌) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))}) |
10 | 9 | eleq2d 2867 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})) |
11 | eleq1 2869 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) | |
12 | oveq1 7026 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌)) | |
13 | 12 | eleq2d 2867 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) |
14 | oveq2 7027 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍)) | |
15 | 14 | eleq2d 2867 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
16 | 11, 13, 15 | 3orbi123d 1427 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
17 | 16 | elrab 3617 | . . 3 ⊢ (𝑍 ∈ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ↔ (𝑍 ∈ 𝑃 ∧ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
18 | 10, 17 | syl6bb 288 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ 𝑃 ∧ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))) |
19 | 1, 18 | mpbirand 703 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∨ w3o 1079 = wceq 1522 ∈ wcel 2080 ≠ wne 2983 {crab 3108 ‘cfv 6228 (class class class)co 7019 Basecbs 16312 TarskiGcstrkg 25898 Itvcitv 25904 LineGclng 25905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pr 5224 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-sbc 3708 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-nul 4214 df-if 4384 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-br 4965 df-opab 5027 df-id 5351 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-iota 6192 df-fun 6230 df-fv 6236 df-ov 7022 df-oprab 7023 df-mpo 7024 df-trkg 25921 |
This theorem is referenced by: tgcolg 26022 hlln 26075 lnhl 26083 btwnlng1 26087 btwnlng2 26088 btwnlng3 26089 lncom 26090 lnrot1 26091 lnrot2 26092 tglineeltr 26099 colmid 26156 cgracol 26296 |
Copyright terms: Public domain | W3C validator |