![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tgellng | Structured version Visualization version GIF version |
Description: Property of lying on the line going through points 𝑋 and 𝑌. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation 𝑍 ∈ (𝑋(LineG‘𝐺)𝑌) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tglngval.z | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
tgellng.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
Ref | Expression |
---|---|
tgellng | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgellng.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
2 | tglngval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
3 | tglngval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglngval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
6 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
7 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
8 | tglngval.z | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
9 | 2, 3, 4, 5, 6, 7, 8 | tglngval 27391 | . . . 4 ⊢ (𝜑 → (𝑋𝐿𝑌) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))}) |
10 | 9 | eleq2d 2823 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})) |
11 | eleq1 2825 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) | |
12 | oveq1 7361 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌)) | |
13 | 12 | eleq2d 2823 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) |
14 | oveq2 7362 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍)) | |
15 | 14 | eleq2d 2823 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
16 | 11, 13, 15 | 3orbi123d 1435 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
17 | 16 | elrab 3644 | . . 3 ⊢ (𝑍 ∈ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ↔ (𝑍 ∈ 𝑃 ∧ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
18 | 10, 17 | bitrdi 286 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ 𝑃 ∧ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))) |
19 | 1, 18 | mpbirand 705 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ w3o 1086 = wceq 1541 ∈ wcel 2106 ≠ wne 2942 {crab 3406 ‘cfv 6494 (class class class)co 7354 Basecbs 17080 TarskiGcstrkg 27267 Itvcitv 27273 LineGclng 27274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5255 ax-nul 5262 ax-pr 5383 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2888 df-ne 2943 df-ral 3064 df-rex 3073 df-rab 3407 df-v 3446 df-sbc 3739 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-br 5105 df-opab 5167 df-id 5530 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-iota 6446 df-fun 6496 df-fv 6502 df-ov 7357 df-oprab 7358 df-mpo 7359 df-trkg 27293 |
This theorem is referenced by: tgcolg 27394 hlln 27447 lnhl 27455 btwnlng1 27459 btwnlng2 27460 btwnlng3 27461 lncom 27462 lnrot1 27463 lnrot2 27464 tglineeltr 27471 colmid 27528 cgracol 27668 |
Copyright terms: Public domain | W3C validator |