| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgellng | Structured version Visualization version GIF version | ||
| Description: Property of lying on the line going through points 𝑋 and 𝑌. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation 𝑍 ∈ (𝑋(LineG‘𝐺)𝑌) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| tglngval.z | ⊢ (𝜑 → 𝑋 ≠ 𝑌) |
| tgellng.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| tgellng | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgellng.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 2 | tglngval.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | tglngval.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglngval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tglngval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 6 | tglngval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 7 | tglngval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 8 | tglngval.z | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑌) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | tglngval 28514 | . . . 4 ⊢ (𝜑 → (𝑋𝐿𝑌) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))}) |
| 10 | 9 | eleq2d 2819 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})) |
| 11 | eleq1 2821 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌))) | |
| 12 | oveq1 7421 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌)) | |
| 13 | 12 | eleq2d 2819 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌))) |
| 14 | oveq2 7422 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍)) | |
| 15 | 14 | eleq2d 2819 | . . . . 5 ⊢ (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍))) |
| 16 | 11, 13, 15 | 3orbi123d 1436 | . . . 4 ⊢ (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 17 | 16 | elrab 3676 | . . 3 ⊢ (𝑍 ∈ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ↔ (𝑍 ∈ 𝑃 ∧ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| 18 | 10, 17 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ 𝑃 ∧ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))) |
| 19 | 1, 18 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 {crab 3420 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6495 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-trkg 28416 |
| This theorem is referenced by: tgcolg 28517 hlln 28570 lnhl 28578 btwnlng1 28582 btwnlng2 28583 btwnlng3 28584 lncom 28585 lnrot1 28586 lnrot2 28587 tglineeltr 28594 colmid 28651 cgracol 28791 |
| Copyright terms: Public domain | W3C validator |