MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgellng Structured version   Visualization version   GIF version

Theorem tgellng 28059
Description: Property of lying on the line going through points 𝑋 and π‘Œ. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation 𝑍 ∈ (𝑋(LineGβ€˜πΊ)π‘Œ) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Baseβ€˜πΊ)
tglngval.l 𝐿 = (LineGβ€˜πΊ)
tglngval.i 𝐼 = (Itvβ€˜πΊ)
tglngval.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglngval.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
tglngval.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
tglngval.z (πœ‘ β†’ 𝑋 β‰  π‘Œ)
tgellng.z (πœ‘ β†’ 𝑍 ∈ 𝑃)
Assertion
Ref Expression
tgellng (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))

Proof of Theorem tgellng
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgellng.z . 2 (πœ‘ β†’ 𝑍 ∈ 𝑃)
2 tglngval.p . . . . 5 𝑃 = (Baseβ€˜πΊ)
3 tglngval.l . . . . 5 𝐿 = (LineGβ€˜πΊ)
4 tglngval.i . . . . 5 𝐼 = (Itvβ€˜πΊ)
5 tglngval.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
6 tglngval.x . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝑃)
7 tglngval.y . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝑃)
8 tglngval.z . . . . 5 (πœ‘ β†’ 𝑋 β‰  π‘Œ)
92, 3, 4, 5, 6, 7, 8tglngval 28057 . . . 4 (πœ‘ β†’ (π‘‹πΏπ‘Œ) = {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))})
109eleq2d 2819 . . 3 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ 𝑍 ∈ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))}))
11 eleq1 2821 . . . . 5 (𝑧 = 𝑍 β†’ (𝑧 ∈ (π‘‹πΌπ‘Œ) ↔ 𝑍 ∈ (π‘‹πΌπ‘Œ)))
12 oveq1 7418 . . . . . 6 (𝑧 = 𝑍 β†’ (π‘§πΌπ‘Œ) = (π‘πΌπ‘Œ))
1312eleq2d 2819 . . . . 5 (𝑧 = 𝑍 β†’ (𝑋 ∈ (π‘§πΌπ‘Œ) ↔ 𝑋 ∈ (π‘πΌπ‘Œ)))
14 oveq2 7419 . . . . . 6 (𝑧 = 𝑍 β†’ (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
1514eleq2d 2819 . . . . 5 (𝑧 = 𝑍 β†’ (π‘Œ ∈ (𝑋𝐼𝑧) ↔ π‘Œ ∈ (𝑋𝐼𝑍)))
1611, 13, 153orbi123d 1435 . . . 4 (𝑧 = 𝑍 β†’ ((𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
1716elrab 3683 . . 3 (𝑍 ∈ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘§πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑧))} ↔ (𝑍 ∈ 𝑃 ∧ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
1810, 17bitrdi 286 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ (𝑍 ∈ 𝑃 ∧ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍)))))
191, 18mpbirand 705 1 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ w3o 1086   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  TarskiGcstrkg 27933  Itvcitv 27939  LineGclng 27940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-trkg 27959
This theorem is referenced by:  tgcolg  28060  hlln  28113  lnhl  28121  btwnlng1  28125  btwnlng2  28126  btwnlng3  28127  lncom  28128  lnrot1  28129  lnrot2  28130  tglineeltr  28137  colmid  28194  cgracol  28334
  Copyright terms: Public domain W3C validator