MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgellng Structured version   Visualization version   GIF version

Theorem tgellng 28516
Description: Property of lying on the line going through points 𝑋 and 𝑌. Definition 4.10 of [Schwabhauser] p. 36. We choose the notation 𝑍 ∈ (𝑋(LineG‘𝐺)𝑌) instead of "colinear" because LineG is a common structure slot for other axiomatizations of geometry. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tglngval.z (𝜑𝑋𝑌)
tgellng.z (𝜑𝑍𝑃)
Assertion
Ref Expression
tgellng (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))

Proof of Theorem tgellng
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tgellng.z . 2 (𝜑𝑍𝑃)
2 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
3 tglngval.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
6 tglngval.x . . . . 5 (𝜑𝑋𝑃)
7 tglngval.y . . . . 5 (𝜑𝑌𝑃)
8 tglngval.z . . . . 5 (𝜑𝑋𝑌)
92, 3, 4, 5, 6, 7, 8tglngval 28514 . . . 4 (𝜑 → (𝑋𝐿𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
109eleq2d 2814 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ 𝑍 ∈ {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))}))
11 eleq1 2816 . . . . 5 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑋𝐼𝑌)))
12 oveq1 7360 . . . . . 6 (𝑧 = 𝑍 → (𝑧𝐼𝑌) = (𝑍𝐼𝑌))
1312eleq2d 2814 . . . . 5 (𝑧 = 𝑍 → (𝑋 ∈ (𝑧𝐼𝑌) ↔ 𝑋 ∈ (𝑍𝐼𝑌)))
14 oveq2 7361 . . . . . 6 (𝑧 = 𝑍 → (𝑋𝐼𝑧) = (𝑋𝐼𝑍))
1514eleq2d 2814 . . . . 5 (𝑧 = 𝑍 → (𝑌 ∈ (𝑋𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑍)))
1611, 13, 153orbi123d 1437 . . . 4 (𝑧 = 𝑍 → ((𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
1716elrab 3650 . . 3 (𝑍 ∈ {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ↔ (𝑍𝑃 ∧ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
1810, 17bitrdi 287 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍𝑃 ∧ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))))
191, 18mpbirand 707 1 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  {crab 3396  cfv 6486  (class class class)co 7353  Basecbs 17138  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-trkg 28416
This theorem is referenced by:  tgcolg  28517  hlln  28570  lnhl  28578  btwnlng1  28582  btwnlng2  28583  btwnlng3  28584  lncom  28585  lnrot1  28586  lnrot2  28587  tglineeltr  28594  colmid  28651  cgracol  28791
  Copyright terms: Public domain W3C validator