![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglinecom | Structured version Visualization version GIF version |
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | β’ π΅ = (BaseβπΊ) |
tglineelsb2.i | β’ πΌ = (ItvβπΊ) |
tglineelsb2.l | β’ πΏ = (LineGβπΊ) |
tglineelsb2.g | β’ (π β πΊ β TarskiG) |
tglineelsb2.1 | β’ (π β π β π΅) |
tglineelsb2.2 | β’ (π β π β π΅) |
tglineelsb2.4 | β’ (π β π β π) |
Ref | Expression |
---|---|
tglinecom | β’ (π β (ππΏπ) = (ππΏπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . 4 β’ π΅ = (BaseβπΊ) | |
2 | tglineelsb2.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
3 | tglineelsb2.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
4 | tglineelsb2.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
5 | 4 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β πΊ β TarskiG) |
6 | tglineelsb2.2 | . . . . 5 β’ (π β π β π΅) | |
7 | 6 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
8 | tglineelsb2.1 | . . . . 5 β’ (π β π β π΅) | |
9 | 8 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
10 | tglineelsb2.4 | . . . . . 6 β’ (π β π β π) | |
11 | 1, 3, 2, 4, 8, 6, 10 | tglnssp 28071 | . . . . 5 β’ (π β (ππΏπ) β π΅) |
12 | 11 | sselda 3982 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β π΅) |
13 | 10 | necomd 2995 | . . . . 5 β’ (π β π β π) |
14 | 13 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
15 | simpr 484 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) | |
16 | 1, 2, 3, 5, 7, 9, 12, 14, 15 | lncom 28141 | . . 3 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) |
17 | 4 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β πΊ β TarskiG) |
18 | 8 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
19 | 6 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π΅) |
20 | 1, 3, 2, 4, 6, 8, 13 | tglnssp 28071 | . . . . 5 β’ (π β (ππΏπ) β π΅) |
21 | 20 | sselda 3982 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β π΅) |
22 | 10 | adantr 480 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π β π) |
23 | simpr 484 | . . . 4 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) | |
24 | 1, 2, 3, 17, 18, 19, 21, 22, 23 | lncom 28141 | . . 3 β’ ((π β§ π₯ β (ππΏπ)) β π₯ β (ππΏπ)) |
25 | 16, 24 | impbida 798 | . 2 β’ (π β (π₯ β (ππΏπ) β π₯ β (ππΏπ))) |
26 | 25 | eqrdv 2729 | 1 β’ (π β (ππΏπ) = (ππΏπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 βcfv 6543 (class class class)co 7412 Basecbs 17149 TarskiGcstrkg 27946 Itvcitv 27952 LineGclng 27953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-trkgc 27967 df-trkgb 27968 df-trkgcb 27969 df-trkg 27972 |
This theorem is referenced by: tglinethru 28155 coltr3 28167 footeq 28243 colperpexlem3 28251 mideulem2 28253 opphllem 28254 midex 28256 opphllem3 28268 opphllem5 28270 lmicom 28307 lmiisolem 28315 lnperpex 28322 trgcopy 28323 |
Copyright terms: Public domain | W3C validator |