Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinecom Structured version   Visualization version   GIF version

Theorem tglinecom 26435
 Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tglinecom (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃))

Proof of Theorem tglinecom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . 4 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . 4 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG)
6 tglineelsb2.2 . . . . 5 (𝜑𝑄𝐵)
76adantr 484 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄𝐵)
8 tglineelsb2.1 . . . . 5 (𝜑𝑃𝐵)
98adantr 484 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃𝐵)
10 tglineelsb2.4 . . . . . 6 (𝜑𝑃𝑄)
111, 3, 2, 4, 8, 6, 10tglnssp 26352 . . . . 5 (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵)
1211sselda 3953 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥𝐵)
1310necomd 3069 . . . . 5 (𝜑𝑄𝑃)
1413adantr 484 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄𝑃)
15 simpr 488 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄))
161, 2, 3, 5, 7, 9, 12, 14, 15lncom 26422 . . 3 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑄𝐿𝑃))
174adantr 484 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝐺 ∈ TarskiG)
188adantr 484 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃𝐵)
196adantr 484 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑄𝐵)
201, 3, 2, 4, 6, 8, 13tglnssp 26352 . . . . 5 (𝜑 → (𝑄𝐿𝑃) ⊆ 𝐵)
2120sselda 3953 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥𝐵)
2210adantr 484 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃𝑄)
23 simpr 488 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑄𝐿𝑃))
241, 2, 3, 17, 18, 19, 21, 22, 23lncom 26422 . . 3 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑃𝐿𝑄))
2516, 24impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑄𝐿𝑃)))
2625eqrdv 2822 1 (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ‘cfv 6343  (class class class)co 7149  Basecbs 16483  TarskiGcstrkg 26230  Itvcitv 26236  LineGclng 26237 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-iota 6302  df-fun 6345  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-trkgc 26248  df-trkgb 26249  df-trkgcb 26250  df-trkg 26253 This theorem is referenced by:  tglinethru  26436  coltr3  26448  footeq  26524  colperpexlem3  26532  mideulem2  26534  opphllem  26535  midex  26537  opphllem3  26549  opphllem5  26551  lmicom  26588  lmiisolem  26596  lnperpex  26603  trgcopy  26604
 Copyright terms: Public domain W3C validator