| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglinecom | Structured version Visualization version GIF version | ||
| Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
| tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
| tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| Ref | Expression |
|---|---|
| tglinecom | ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 4 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG) |
| 6 | tglineelsb2.2 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ 𝐵) |
| 8 | tglineelsb2.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃 ∈ 𝐵) |
| 10 | tglineelsb2.4 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
| 11 | 1, 3, 2, 4, 8, 6, 10 | tglnssp 28530 | . . . . 5 ⊢ (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵) |
| 12 | 11 | sselda 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ 𝐵) |
| 13 | 10 | necomd 2983 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑃) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ≠ 𝑃) |
| 15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄)) | |
| 16 | 1, 2, 3, 5, 7, 9, 12, 14, 15 | lncom 28600 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑄𝐿𝑃)) |
| 17 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝐺 ∈ TarskiG) |
| 18 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃 ∈ 𝐵) |
| 19 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑄 ∈ 𝐵) |
| 20 | 1, 3, 2, 4, 6, 8, 13 | tglnssp 28530 | . . . . 5 ⊢ (𝜑 → (𝑄𝐿𝑃) ⊆ 𝐵) |
| 21 | 20 | sselda 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ 𝐵) |
| 22 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃 ≠ 𝑄) |
| 23 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑄𝐿𝑃)) | |
| 24 | 1, 2, 3, 17, 18, 19, 21, 22, 23 | lncom 28600 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑃𝐿𝑄)) |
| 25 | 16, 24 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑄𝐿𝑃))) |
| 26 | 25 | eqrdv 2729 | 1 ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 TarskiGcstrkg 28405 Itvcitv 28411 LineGclng 28412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-trkgc 28426 df-trkgb 28427 df-trkgcb 28428 df-trkg 28431 |
| This theorem is referenced by: tglinethru 28614 coltr3 28626 footeq 28702 colperpexlem3 28710 mideulem2 28712 opphllem 28713 midex 28715 opphllem3 28727 opphllem5 28729 lmicom 28766 lmiisolem 28774 lnperpex 28781 trgcopy 28782 |
| Copyright terms: Public domain | W3C validator |