MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinecom Structured version   Visualization version   GIF version

Theorem tglinecom 28154
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐡 = (Baseβ€˜πΊ)
tglineelsb2.i 𝐼 = (Itvβ€˜πΊ)
tglineelsb2.l 𝐿 = (LineGβ€˜πΊ)
tglineelsb2.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
tglineelsb2.1 (πœ‘ β†’ 𝑃 ∈ 𝐡)
tglineelsb2.2 (πœ‘ β†’ 𝑄 ∈ 𝐡)
tglineelsb2.4 (πœ‘ β†’ 𝑃 β‰  𝑄)
Assertion
Ref Expression
tglinecom (πœ‘ β†’ (𝑃𝐿𝑄) = (𝑄𝐿𝑃))

Proof of Theorem tglinecom
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . 4 𝐡 = (Baseβ€˜πΊ)
2 tglineelsb2.i . . . 4 𝐼 = (Itvβ€˜πΊ)
3 tglineelsb2.l . . . 4 𝐿 = (LineGβ€˜πΊ)
4 tglineelsb2.g . . . . 5 (πœ‘ β†’ 𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃𝐿𝑄)) β†’ 𝐺 ∈ TarskiG)
6 tglineelsb2.2 . . . . 5 (πœ‘ β†’ 𝑄 ∈ 𝐡)
76adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃𝐿𝑄)) β†’ 𝑄 ∈ 𝐡)
8 tglineelsb2.1 . . . . 5 (πœ‘ β†’ 𝑃 ∈ 𝐡)
98adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃𝐿𝑄)) β†’ 𝑃 ∈ 𝐡)
10 tglineelsb2.4 . . . . . 6 (πœ‘ β†’ 𝑃 β‰  𝑄)
111, 3, 2, 4, 8, 6, 10tglnssp 28071 . . . . 5 (πœ‘ β†’ (𝑃𝐿𝑄) βŠ† 𝐡)
1211sselda 3982 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃𝐿𝑄)) β†’ π‘₯ ∈ 𝐡)
1310necomd 2995 . . . . 5 (πœ‘ β†’ 𝑄 β‰  𝑃)
1413adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃𝐿𝑄)) β†’ 𝑄 β‰  𝑃)
15 simpr 484 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑃𝐿𝑄)) β†’ π‘₯ ∈ (𝑃𝐿𝑄))
161, 2, 3, 5, 7, 9, 12, 14, 15lncom 28141 . . 3 ((πœ‘ ∧ π‘₯ ∈ (𝑃𝐿𝑄)) β†’ π‘₯ ∈ (𝑄𝐿𝑃))
174adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑄𝐿𝑃)) β†’ 𝐺 ∈ TarskiG)
188adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑄𝐿𝑃)) β†’ 𝑃 ∈ 𝐡)
196adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑄𝐿𝑃)) β†’ 𝑄 ∈ 𝐡)
201, 3, 2, 4, 6, 8, 13tglnssp 28071 . . . . 5 (πœ‘ β†’ (𝑄𝐿𝑃) βŠ† 𝐡)
2120sselda 3982 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑄𝐿𝑃)) β†’ π‘₯ ∈ 𝐡)
2210adantr 480 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑄𝐿𝑃)) β†’ 𝑃 β‰  𝑄)
23 simpr 484 . . . 4 ((πœ‘ ∧ π‘₯ ∈ (𝑄𝐿𝑃)) β†’ π‘₯ ∈ (𝑄𝐿𝑃))
241, 2, 3, 17, 18, 19, 21, 22, 23lncom 28141 . . 3 ((πœ‘ ∧ π‘₯ ∈ (𝑄𝐿𝑃)) β†’ π‘₯ ∈ (𝑃𝐿𝑄))
2516, 24impbida 798 . 2 (πœ‘ β†’ (π‘₯ ∈ (𝑃𝐿𝑄) ↔ π‘₯ ∈ (𝑄𝐿𝑃)))
2625eqrdv 2729 1 (πœ‘ β†’ (𝑃𝐿𝑄) = (𝑄𝐿𝑃))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  β€˜cfv 6543  (class class class)co 7412  Basecbs 17149  TarskiGcstrkg 27946  Itvcitv 27952  LineGclng 27953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-trkgc 27967  df-trkgb 27968  df-trkgcb 27969  df-trkg 27972
This theorem is referenced by:  tglinethru  28155  coltr3  28167  footeq  28243  colperpexlem3  28251  mideulem2  28253  opphllem  28254  midex  28256  opphllem3  28268  opphllem5  28270  lmicom  28307  lmiisolem  28315  lnperpex  28322  trgcopy  28323
  Copyright terms: Public domain W3C validator