MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglinecom Structured version   Visualization version   GIF version

Theorem tglinecom 28580
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tglineelsb2.1 (𝜑𝑃𝐵)
tglineelsb2.2 (𝜑𝑄𝐵)
tglineelsb2.4 (𝜑𝑃𝑄)
Assertion
Ref Expression
tglinecom (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃))

Proof of Theorem tglinecom
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . 4 𝐵 = (Base‘𝐺)
2 tglineelsb2.i . . . 4 𝐼 = (Itv‘𝐺)
3 tglineelsb2.l . . . 4 𝐿 = (LineG‘𝐺)
4 tglineelsb2.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG)
6 tglineelsb2.2 . . . . 5 (𝜑𝑄𝐵)
76adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄𝐵)
8 tglineelsb2.1 . . . . 5 (𝜑𝑃𝐵)
98adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃𝐵)
10 tglineelsb2.4 . . . . . 6 (𝜑𝑃𝑄)
111, 3, 2, 4, 8, 6, 10tglnssp 28497 . . . . 5 (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵)
1211sselda 3935 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥𝐵)
1310necomd 2980 . . . . 5 (𝜑𝑄𝑃)
1413adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄𝑃)
15 simpr 484 . . . 4 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄))
161, 2, 3, 5, 7, 9, 12, 14, 15lncom 28567 . . 3 ((𝜑𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑄𝐿𝑃))
174adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝐺 ∈ TarskiG)
188adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃𝐵)
196adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑄𝐵)
201, 3, 2, 4, 6, 8, 13tglnssp 28497 . . . . 5 (𝜑 → (𝑄𝐿𝑃) ⊆ 𝐵)
2120sselda 3935 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥𝐵)
2210adantr 480 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃𝑄)
23 simpr 484 . . . 4 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑄𝐿𝑃))
241, 2, 3, 17, 18, 19, 21, 22, 23lncom 28567 . . 3 ((𝜑𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑃𝐿𝑄))
2516, 24impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑄𝐿𝑃)))
2625eqrdv 2727 1 (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6482  (class class class)co 7349  Basecbs 17120  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-trkgc 28393  df-trkgb 28394  df-trkgcb 28395  df-trkg 28398
This theorem is referenced by:  tglinethru  28581  coltr3  28593  footeq  28669  colperpexlem3  28677  mideulem2  28679  opphllem  28680  midex  28682  opphllem3  28694  opphllem5  28696  lmicom  28733  lmiisolem  28741  lnperpex  28748  trgcopy  28749
  Copyright terms: Public domain W3C validator