![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglinecom | Structured version Visualization version GIF version |
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tglinecom | ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG) |
6 | tglineelsb2.2 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
7 | 6 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ 𝐵) |
8 | tglineelsb2.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
9 | 8 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃 ∈ 𝐵) |
10 | tglineelsb2.4 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
11 | 1, 3, 2, 4, 8, 6, 10 | tglnssp 26040 | . . . . 5 ⊢ (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵) |
12 | 11 | sselda 3858 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ 𝐵) |
13 | 10 | necomd 3022 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑃) |
14 | 13 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ≠ 𝑃) |
15 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄)) | |
16 | 1, 2, 3, 5, 7, 9, 12, 14, 15 | lncom 26110 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑄𝐿𝑃)) |
17 | 4 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝐺 ∈ TarskiG) |
18 | 8 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃 ∈ 𝐵) |
19 | 6 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑄 ∈ 𝐵) |
20 | 1, 3, 2, 4, 6, 8, 13 | tglnssp 26040 | . . . . 5 ⊢ (𝜑 → (𝑄𝐿𝑃) ⊆ 𝐵) |
21 | 20 | sselda 3858 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ 𝐵) |
22 | 10 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃 ≠ 𝑄) |
23 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑄𝐿𝑃)) | |
24 | 1, 2, 3, 17, 18, 19, 21, 22, 23 | lncom 26110 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑃𝐿𝑄)) |
25 | 16, 24 | impbida 788 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑄𝐿𝑃))) |
26 | 25 | eqrdv 2776 | 1 ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 TarskiGcstrkg 25918 Itvcitv 25924 LineGclng 25925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-iota 6152 df-fun 6190 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-trkgc 25936 df-trkgb 25937 df-trkgcb 25938 df-trkg 25941 |
This theorem is referenced by: tglinethru 26124 coltr3 26136 footeq 26212 colperpexlem3 26220 mideulem2 26222 opphllem 26223 midex 26225 opphllem3 26237 opphllem5 26239 lmicom 26276 lmiisolem 26284 lnperpex 26291 trgcopy 26292 |
Copyright terms: Public domain | W3C validator |