![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tglinecom | Structured version Visualization version GIF version |
Description: Commutativity law for lines. Part of theorem 6.17 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
Ref | Expression |
---|---|
tglinecom | ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG) |
6 | tglineelsb2.2 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ 𝐵) |
8 | tglineelsb2.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃 ∈ 𝐵) |
10 | tglineelsb2.4 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
11 | 1, 3, 2, 4, 8, 6, 10 | tglnssp 28578 | . . . . 5 ⊢ (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵) |
12 | 11 | sselda 4008 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ 𝐵) |
13 | 10 | necomd 3002 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑃) |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ≠ 𝑃) |
15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄)) | |
16 | 1, 2, 3, 5, 7, 9, 12, 14, 15 | lncom 28648 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑄𝐿𝑃)) |
17 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝐺 ∈ TarskiG) |
18 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃 ∈ 𝐵) |
19 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑄 ∈ 𝐵) |
20 | 1, 3, 2, 4, 6, 8, 13 | tglnssp 28578 | . . . . 5 ⊢ (𝜑 → (𝑄𝐿𝑃) ⊆ 𝐵) |
21 | 20 | sselda 4008 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ 𝐵) |
22 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑃 ≠ 𝑄) |
23 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑄𝐿𝑃)) | |
24 | 1, 2, 3, 17, 18, 19, 21, 22, 23 | lncom 28648 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑄𝐿𝑃)) → 𝑥 ∈ (𝑃𝐿𝑄)) |
25 | 16, 24 | impbida 800 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑄𝐿𝑃))) |
26 | 25 | eqrdv 2738 | 1 ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑄𝐿𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 |
This theorem is referenced by: tglinethru 28662 coltr3 28674 footeq 28750 colperpexlem3 28758 mideulem2 28760 opphllem 28761 midex 28763 opphllem3 28775 opphllem5 28777 lmicom 28814 lmiisolem 28822 lnperpex 28829 trgcopy 28830 |
Copyright terms: Public domain | W3C validator |