Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndmet Structured version   Visualization version   GIF version

Theorem totbndmet 37811
Description: The predicate "totally bounded" implies 𝑀 is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
totbndmet (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))

Proof of Theorem totbndmet
Dummy variables 𝑏 𝑑 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 37808 . 2 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
21simplbi 497 1 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056   cuni 4859  cfv 6481  (class class class)co 7346  Fincfn 8869  +crp 12887  Metcmet 21275  ballcbl 21276  TotBndctotbnd 37805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-totbnd 37807
This theorem is referenced by:  totbndss  37816  totbndbnd  37828  prdstotbnd  37833
  Copyright terms: Public domain W3C validator