| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > totbndmet | Structured version Visualization version GIF version | ||
| Description: The predicate "totally bounded" implies 𝑀 is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| totbndmet | ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istotbnd 37829 | . 2 ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∪ cuni 4858 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 ℝ+crp 12892 Metcmet 21279 ballcbl 21280 TotBndctotbnd 37826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-totbnd 37828 |
| This theorem is referenced by: totbndss 37837 totbndbnd 37849 prdstotbnd 37854 |
| Copyright terms: Public domain | W3C validator |