Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndss Structured version   Visualization version   GIF version

Theorem totbndss 37771
Description: A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndss ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆))

Proof of Theorem totbndss
Dummy variables 𝑏 𝑑 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 37763 . . . 4 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
21simprbi 496 . . 3 (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
3 sseq2 3973 . . . . . . 7 ( 𝑣 = 𝑋 → (𝑆 𝑣𝑆𝑋))
43biimprcd 250 . . . . . 6 (𝑆𝑋 → ( 𝑣 = 𝑋𝑆 𝑣))
54anim1d 611 . . . . 5 (𝑆𝑋 → (( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
65reximdv 3148 . . . 4 (𝑆𝑋 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
76ralimdv 3147 . . 3 (𝑆𝑋 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
82, 7mpan9 506 . 2 ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆𝑋) → ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
9 totbndmet 37766 . . 3 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
10 eqid 2729 . . . 4 (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆))
1110sstotbnd 37769 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
129, 11sylan 580 . 2 ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
138, 12mpbird 257 1 ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   cuni 4871   × cxp 5636  cres 5640  cfv 6511  (class class class)co 7387  Fincfn 8918  +crp 12951  Metcmet 21250  ballcbl 21251  TotBndctotbnd 37760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-totbnd 37762
This theorem is referenced by:  prdsbnd2  37789
  Copyright terms: Public domain W3C validator