Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  totbndss Structured version   Visualization version   GIF version

Theorem totbndss 35488
Description: A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
totbndss ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆))

Proof of Theorem totbndss
Dummy variables 𝑏 𝑑 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istotbnd 35480 . . . 4 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
21simprbi 501 . . 3 (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
3 sseq2 3919 . . . . . . 7 ( 𝑣 = 𝑋 → (𝑆 𝑣𝑆𝑋))
43biimprcd 253 . . . . . 6 (𝑆𝑋 → ( 𝑣 = 𝑋𝑆 𝑣))
54anim1d 614 . . . . 5 (𝑆𝑋 → (( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
65reximdv 3198 . . . 4 (𝑆𝑋 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
76ralimdv 3110 . . 3 (𝑆𝑋 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
82, 7mpan9 511 . 2 ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆𝑋) → ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
9 totbndmet 35483 . . 3 (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
10 eqid 2759 . . . 4 (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆))
1110sstotbnd 35486 . . 3 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
129, 11sylan 584 . 2 ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin (𝑆 𝑣 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
138, 12mpbird 260 1 ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wral 3071  wrex 3072  wss 3859   cuni 4799   × cxp 5523  cres 5527  cfv 6336  (class class class)co 7151  Fincfn 8528  +crp 12423  Metcmet 20145  ballcbl 20146  TotBndctotbnd 35477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-2 11730  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-totbnd 35479
This theorem is referenced by:  prdsbnd2  35506
  Copyright terms: Public domain W3C validator