Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > totbndss | Structured version Visualization version GIF version |
Description: A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
totbndss | ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istotbnd 35927 | . . . 4 ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | |
2 | 1 | simprbi 497 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
3 | sseq2 3947 | . . . . . . 7 ⊢ (∪ 𝑣 = 𝑋 → (𝑆 ⊆ ∪ 𝑣 ↔ 𝑆 ⊆ 𝑋)) | |
4 | 3 | biimprcd 249 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → (∪ 𝑣 = 𝑋 → 𝑆 ⊆ ∪ 𝑣)) |
5 | 4 | anim1d 611 | . . . . 5 ⊢ (𝑆 ⊆ 𝑋 → ((∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
6 | 5 | reximdv 3202 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 → (∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
7 | 6 | ralimdv 3109 | . . 3 ⊢ (𝑆 ⊆ 𝑋 → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
8 | 2, 7 | mpan9 507 | . 2 ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
9 | totbndmet 35930 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) | |
10 | eqid 2738 | . . . 4 ⊢ (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆)) | |
11 | 10 | sstotbnd 35933 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
12 | 9, 11 | sylan 580 | . 2 ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
13 | 8, 12 | mpbird 256 | 1 ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∪ cuni 4839 × cxp 5587 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℝ+crp 12730 Metcmet 20583 ballcbl 20584 TotBndctotbnd 35924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-totbnd 35926 |
This theorem is referenced by: prdsbnd2 35953 |
Copyright terms: Public domain | W3C validator |