| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > totbndss | Structured version Visualization version GIF version | ||
| Description: A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| totbndss | ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istotbnd 37777 | . . . 4 ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | |
| 2 | 1 | simprbi 496 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘𝑋) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 3 | sseq2 4009 | . . . . . . 7 ⊢ (∪ 𝑣 = 𝑋 → (𝑆 ⊆ ∪ 𝑣 ↔ 𝑆 ⊆ 𝑋)) | |
| 4 | 3 | biimprcd 250 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → (∪ 𝑣 = 𝑋 → 𝑆 ⊆ ∪ 𝑣)) |
| 5 | 4 | anim1d 611 | . . . . 5 ⊢ (𝑆 ⊆ 𝑋 → ((∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 6 | 5 | reximdv 3169 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 → (∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 7 | 6 | ralimdv 3168 | . . 3 ⊢ (𝑆 ⊆ 𝑋 → (∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 8 | 2, 7 | mpan9 506 | . 2 ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 9 | totbndmet 37780 | . . 3 ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) | |
| 10 | eqid 2736 | . . . 4 ⊢ (𝑀 ↾ (𝑆 × 𝑆)) = (𝑀 ↾ (𝑆 × 𝑆)) | |
| 11 | 10 | sstotbnd 37783 | . . 3 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 12 | 9, 11 | sylan 580 | . 2 ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑆 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 13 | 8, 12 | mpbird 257 | 1 ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 ∪ cuni 4906 × cxp 5682 ↾ cres 5686 ‘cfv 6560 (class class class)co 7432 Fincfn 8986 ℝ+crp 13035 Metcmet 21351 ballcbl 21352 TotBndctotbnd 37774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-totbnd 37776 |
| This theorem is referenced by: prdsbnd2 37803 |
| Copyright terms: Public domain | W3C validator |