MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edguhgr Structured version   Visualization version   GIF version

Theorem edguhgr 29056
Description: An edge of a hypergraph is a subset of vertices. (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 28-Nov-2020.)
Assertion
Ref Expression
edguhgr ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺))

Proof of Theorem edguhgr
StepHypRef Expression
1 uhgredgn0 29055 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
21eldifad 3926 1 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  c0 4296  𝒫 cpw 4563  {csn 4589  cfv 6511  Vtxcvtx 28923  Edgcedg 28974  UHGraphcuhgr 28983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-edg 28975  df-uhgr 28985
This theorem is referenced by:  uhgredgrnv  29057  uhgrissubgr  29202  umgrres1lem  29237  nbuhgr  29270  nbuhgr2vtx1edgblem  29278  isuspgrimlem  47892
  Copyright terms: Public domain W3C validator