MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edguhgr Structured version   Visualization version   GIF version

Theorem edguhgr 27499
Description: An edge of a hypergraph is a subset of vertices. (Contributed by AV, 26-Oct-2020.) (Proof shortened by AV, 28-Nov-2020.)
Assertion
Ref Expression
edguhgr ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺))

Proof of Theorem edguhgr
StepHypRef Expression
1 uhgredgn0 27498 . 2 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
21eldifad 3899 1 ((𝐺 ∈ UHGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → 𝐸 ∈ 𝒫 (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  c0 4256  𝒫 cpw 4533  {csn 4561  cfv 6433  Vtxcvtx 27366  Edgcedg 27417  UHGraphcuhgr 27426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-edg 27418  df-uhgr 27428
This theorem is referenced by:  uhgredgrnv  27500  uhgrissubgr  27642  umgrres1lem  27677  nbuhgr  27710  nbuhgr2vtx1edgblem  27718  isomuspgrlem2c  45282
  Copyright terms: Public domain W3C validator