MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgredgss Structured version   Visualization version   GIF version

Theorem uhgredgss 27023
Description: The set of edges of a hypergraph is a subset of the power set of vertices without the empty set. (Contributed by AV, 29-Nov-2020.)
Assertion
Ref Expression
uhgredgss (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))

Proof of Theorem uhgredgss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uhgredgn0 27020 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
21ex 416 . 2 (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})))
32ssrdv 3898 1 (𝐺 ∈ UHGraph → (Edg‘𝐺) ⊆ (𝒫 (Vtx‘𝐺) ∖ {∅}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cdif 3855  wss 3858  c0 4225  𝒫 cpw 4494  {csn 4522  cfv 6335  Vtxcvtx 26888  Edgcedg 26939  UHGraphcuhgr 26948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-edg 26940  df-uhgr 26950
This theorem is referenced by:  lfuhgr  32595
  Copyright terms: Public domain W3C validator